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ABSTRACT 

In this paper, we describe software that transforms the keyboard of 
a laptop computer into a velocity sensitive musical keyboard. 
There is already a variety of “virtual midi keyboard” software 
available, but PC keyboard hardware does not normally provide 
information about the dynamics of the keystrokes. Our system 
remedies this through real-time analysis of the sounds of the keys 
via the built-in microphone of the laptop. We describe a prototype 
system, consisting of audio input analysis and synthesis software, 
and a user interface for adjusting the analysis parameters. Experi-
ences and observations from testing the prototype are also dis-
cussed. 

A demonstration video of the keyboard can be downloaded 
from http://www.perttu.info/dvk/ 

1. INTRODUCTION 

musical workstations for mobile musicians, thanks to increasing 
signal processing power and decreasing prices. As Van Veen puts 
it, “The role of the laptop in artistic production has become ubiq-
uitous: it records, transmits, receives, creates, edits, effects, and 
performs; it is mobile, fast, and light.”[1]. However, laptops usu-
ally lack expressive interfaces for real-time musical control, which 
may make it difficult to harness one’s inspiration when there are 
no midi keyboards or other control devices at hand, e.g., during a 
train trip or at work.  

Laptops natively have a keyboard, a touchpad or joystick, and 
a built-in microphone as the input devices. The keyboard and 
touchpad can be used for musical input with software that converts 
keystrokes and mouse movements into midi messages [2][3]. 
Sounds can be recorded using the microphone, and sound input 
features such as amplitude and pitch can be converted into notes 
or control signals [4][5]. The native input devices can be aug-
mented with lightweight portable midi keyboards (e.g., M-AUDIO 
Oxygen [6]), recording/playback interfaces, and various sensors 
(e.g., Phidgets [7]).  

This paper describes how a laptop keyboard can be made ve-
locity sensitive by analyzing the sounds of the keystrokes via the 
laptop’s built-in microphone. With the goal of expanding the 
expressive capabilities of a laptop without additional hardware, we 
have built a velocity sensitive keyboard software prototype, shown 
in Figure 1. Basically, the microphone is treated similar to piezo-
electric sensors in MIDI trigger devices such as drum modules. 
The dynamics information provided by the microphone is aug-
mented with hit location provided by the keyboard 
 

  

 

Figure 1: A screenshot of the software. 

2. SYSTEM DESCRIPTION 

The prototype continuously records incoming audio into a ring 
buffer. Keyboard events are delayed for a user-specified time, and 
when processing a key event, the audio recorded during the delay 
is analyzed. The results of this analysis are used to control sample-
based audio synthesis. 

2.1. Software and Hardware Environment 

The prototype runs on a Windows XP laptop with a VIA Vinyl 
AC’97 WDM audio driver. To minimize latency, an ASIO4ALL 
driver is used on top of the VIA driver. ASIO4ALL is a hardware-
independent low latency ASIO driver that can be used even with 
chipsets with no real ASIO drivers [8]. Audio input is read and 
output written in an audio I/O callback generated by the Por-
tAudio API [9] with 44,100 samples per second and a buffer size 
of 64 samples (the minimum supported by the driver). Keyboard is 
accessed using the Microsoft DirectInput API [10].  

2.2. Audio Analysis 

Figure 2 shows an example of a keystroke sound recorded via the 
built-in microphone of a laptop. In the test system, the length of a 
recorded keystroke is approximately 150ms. This corresponds to a 
sixteenth note at 100 beats per minute. The first step in the analy-
sis is to shorten the sounds by high-pass filtering, which removes 
the slowly decaying low-frequency resonances of the laptop body 
and the underlying surface. This ensures that the sounds of con-
secutive keys don’t overlap in the analysis. We use a second-order 
IIR Butterworth high-pass filter with 600Hz cutoff frequency. An 
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example of a filtered keystroke is shown in the lower part of 
Figure 2. The filtering also removes the low-frequency hum that is 
common in laptop microphones. 

After the filtering, the maximum absolute value of the input 
signal is found within the analysis window and mapped to the gain 
of the played samples. Alternatively, the RMS (square root of the 
mean of squared signal values) of the window can also be used. 
The maximum value is easy to visualize, as shown in Figure 1. On 
the other hand, RMS is less sensitive to noise because it is an 
averaged feature. 

Note that the term ‘velocity sensitive’ is used here only to ad-
here to the common terminology of musical keyboards and MIDI. 
A MIDI note-on message contains a velocity parameter [11], but 
we are not measuring the true velocity of a key. The sound of a 
keystroke is proportional to kinetic energy absorbed from the key, 
which is a function of velocity, but also a function of unknowns 
such as the physical coupling and masses of the key and the 
player’s body parts. The validity of velocity as a control parameter 
depends on the synthesis method. For physically based synthesis, 
analyzing key sounds can actually be considered more realistic, as 
real vibration gets mapped to simulated vibration. 
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Figure 2. Raw and high-pass filtered keystroke audio. 

2.3. Latency 

For real-time playing, it is crucial to minimize the latency of the 
system, that is, the delay between a keystroke and the start of a 
synthesized note. Latencies of less than 10ms are often suggested 
for musical controllers [12][13]. Finney has shown that delay in 
auditory response can cause large errors in the performance of 
pianists [14]. However, Sawchuck et al. suggest that latency toler-
ance is dependent on the piece of music and instrumentation [15]. 

Latency is mainly caused by the following three components: 
 

1. The size of the audio analysis window. There’s a tradeoff 
between latency and the robustness of the analysis re-
sults. Shorter window sizes yield lower latency, but more 
random dynamics information. In an informal test with 
five users who played the prototype in maximum value 
detection mode, the preferred analysis window sizes 
ranged from 10 to 35ms, with median 12ms. The optimal 
value depends on each player’s tolerance for latency and 
imprecision of dynamics. A player with ten years of 

drum playing experience commented the latency was not 
annoying with window sizes less than 10ms, but the dy-
namics were better above 10ms. 

2. Audio hardware and drivers. MacMillan et al. report 
audio input-output latencies as high as 60-120ms in the 
Windows operating system with DirectSound drivers of 
consumer audio hardware [16]. In the test system, the 
ASIO4ALL driver reports less than 1 ms output latency 
and 4.4 ms input latency. This was confirmed by our 
measurements. 

3. Keyboard hardware and drivers, that is, the delay be-
tween the actual key press and the notification of a key 
event in the software. Unfortunately, DirectInput does 
not provide information about keyboard latency. In the 
test system, a key event arrives within 1ms of the sound. 
Combined with the 4.4 ms audio input latency, this indi-
cates approximately 5 ms of keyboard latency. 

 
In addition to the components above, there are random small 
latencies related to operating system thread scheduling. Neglecting 
these, the total latency becomes max[Lk,(Lai+Lw)]+Lao, where Lk is 
keyboard latency, Lai is audio input latency, Lw is the length of the 
analysis window and Lao is the audio output latency. Only the 
larger one of Lk and Lai+Lw has an effect – information about key 
location and dynamics can arrive asynchronously, but both are 
needed for generating a note-on message for the synthesis. The 
analysis window can be shifted in relation to keyboard events so 
that the sound of a key starts at the beginning of the window. 

2.4. User Interface 

The user interface of the prototype has sliders for adjusting the 
analysis window size (key event delay) and shift. Additionally, an 
input level meter helps in adjusting microphone input gain.    

To visualize the analysis, the user interface shows the contents 
of the analysis window, that is, rectified input recorded after the 
last keystroke. The window shows how much of the sound fits 
inside the window and what part of the waveform gets analyzed. 
The horizontal grey line shows the detected velocity. An adjust-
able velocity curve allows fine-tuning the dynamics. The line from 
the waveform display continues to the velocity curve so that the 
user sees its effect on the detected velocity. 

The velocity curve is essential, since the dynamic behavior of 
a laptop keyboard is quite nonlinear. The sound typically consists 
of several parts: the soft sound of a finger hitting the key, the 
spring mechanism, and the sound of the key colliding against the 
laptop when fully depressed. The collision is a particularly nonlin-
ear component, as it becomes audible only when a key is pressed 
hard enough to reach the limits of its movement range. 

3. DISCUSSION 

At the time of writing this, the prototype has been tested by seven 
people with several years of musical training. All of them were 
very enthusiastic about the software, although it can take time 
adjusting to play on a laptop keyboard. The keys are small so that 
it is easy to accidentally hit two keys at the same time. To maxi-
mize the accuracy of the detected velocity, you should also avoid 
hitting the body of the laptop with your palms when playing.  
The prototype has the same limitations as ‘real’ velocity sensitive 
musical keyboards. Keyboards are best for controlling instru-
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ments, where notes are isolated events that are not interacted with 
once triggered. Examples of this are piano and many percussion 
instruments, at least if only considering a subset of playing styles. 
A keyboard is not an ideal control device for continuously con-
trolled instruments, such as woodwinds and bowed strings (see, 
e.g., Paradiso and O’Modhrain [17]). 

Another limitation of laptop keyboards is that they are not 
built to handle several simultaneous key presses. Keys can block 
each other, which makes the keyboard best for playing melodies 
and percussion instead of chords. For chord support, the audio 
analysis should also be improved, as it cannot currently determine 
the individual velocities of simultaneously pressed keys.   

We used a sampled djembe drum in our tests, which worked 
well. Several samples were recorded by hitting the drum at vary-
ing locations and varying intensities. In the synthesis, key location 
was mapped to hit location. In this aspect, a qwerty keyboard has 
more freedom than a piano keyboard. We mapped each row of 
keys to different distance from the center of the drum membrane.  

4. CONCLUSIONS AND FUTURE WORK 

We have presented a prototype of velocity sensitive keyboard 
software that combines information from a regular keyboard and a 
microphone. A demonstration video can be downloaded from 
http://www.tml.tkk.fi/~pjhamala/keyboard/. The software has been 
received with enthusiasm by end users, although there’s a tradeoff 
to be made between latency and accuracy of dynamics.  The soft-
ware is not ideal for live performance due to interfering sounds, 
but it appears promising for headphone use in a reasonably quiet 
environment.    

We aim to integrate the software with other musical tools, e.g., 
as a PD external. In software/hardware environments with high 
latency, the software can be used with non-real-time musical 
editors such as step recorders. There may be other applications to 
explore too, such as measuring the emotions of the user. A com-
puter game study by Brown and Sykes suggests that the pressure 
used to press the buttons on a gamepad varies as a function of 
game difficulty [18]. 

The user interface is currently quite technical and probably not 
very intuitive for the less audio savvy users. The interface could 
be simplified by determining the correct analysis window shift 
automatically, possibly via onset detection of keystroke sounds. 
However, adjusting the shift changes the feel of the keyboard, and 
in preliminary tests, automatic changes while playing felt awk-
ward. This indicates that manual control should be at least an 
option, and more user studies are needed to make the interface 
more intuitive. 
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