

 1

 USING THE BUILT-IN MICROPHONE TO ADD VELOCITY SENSITIVITY TO A LAPTOP
KEYBOARD

Perttu Hämäläinen, Aki Kanerva, Teemu Mäki-Patola

Helsinki University of Technology
Telecommunications Software and Multimedia Laboratory
{pjhamala,akanerva,tmakipat}@tml.hut.fi

ABSTRACT

In this paper, we describe software that transforms the keyboard of
a laptop computer into a velocity sensitive musical keyboard.
There is already a variety of “virtual midi keyboard” software
available, but PC keyboard hardware does not normally provide
information about the dynamics of the keystrokes. Our system
remedies this through real-time analysis of the sounds of the keys
via the built-in microphone of the laptop. We describe a prototype
system, consisting of audio input analysis and synthesis software,
and a user interface for adjusting the analysis parameters. Experi-
ences and observations from testing the prototype are also dis-
cussed.

A demonstration video of the keyboard can be downloaded
from http://www.perttu.info/dvk/

1. INTRODUCTION

musical workstations for mobile musicians, thanks to increasing
signal processing power and decreasing prices. As Van Veen puts
it, “The role of the laptop in artistic production has become ubiq-
uitous: it records, transmits, receives, creates, edits, effects, and
performs; it is mobile, fast, and light.”[1]. However, laptops usu-
ally lack expressive interfaces for real-time musical control, which
may make it difficult to harness one’s inspiration when there are
no midi keyboards or other control devices at hand, e.g., during a
train trip or at work.

Laptops natively have a keyboard, a touchpad or joystick, and
a built-in microphone as the input devices. The keyboard and
touchpad can be used for musical input with software that converts
keystrokes and mouse movements into midi messages [2][3].
Sounds can be recorded using the microphone, and sound input
features such as amplitude and pitch can be converted into notes
or control signals [4][5]. The native input devices can be aug-
mented with lightweight portable midi keyboards (e.g., M-AUDIO
Oxygen [6]), recording/playback interfaces, and various sensors
(e.g., Phidgets [7]).

This paper describes how a laptop keyboard can be made ve-
locity sensitive by analyzing the sounds of the keystrokes via the
laptop’s built-in microphone. With the goal of expanding the
expressive capabilities of a laptop without additional hardware, we
have built a velocity sensitive keyboard software prototype, shown
in Figure 1. Basically, the microphone is treated similar to piezo-
electric sensors in MIDI trigger devices such as drum modules.
The dynamics information provided by the microphone is aug-
mented with hit location provided by the keyboard

Figure 1: A screenshot of the software.

2. SYSTEM DESCRIPTION

The prototype continuously records incoming audio into a ring
buffer. Keyboard events are delayed for a user-specified time, and
when processing a key event, the audio recorded during the delay
is analyzed. The results of this analysis are used to control sample-
based audio synthesis.

2.1. Software and Hardware Environment

The prototype runs on a Windows XP laptop with a VIA Vinyl
AC’97 WDM audio driver. To minimize latency, an ASIO4ALL
driver is used on top of the VIA driver. ASIO4ALL is a hardware-
independent low latency ASIO driver that can be used even with
chipsets with no real ASIO drivers [8]. Audio input is read and
output written in an audio I/O callback generated by the Por-
tAudio API [9] with 44,100 samples per second and a buffer size
of 64 samples (the minimum supported by the driver). Keyboard is
accessed using the Microsoft DirectInput API [10].

2.2. Audio Analysis

Figure 2 shows an example of a keystroke sound recorded via the
built-in microphone of a laptop. In the test system, the length of a
recorded keystroke is approximately 150ms. This corresponds to a
sixteenth note at 100 beats per minute. The first step in the analy-
sis is to shorten the sounds by high-pass filtering, which removes
the slowly decaying low-frequency resonances of the laptop body
and the underlying surface. This ensures that the sounds of con-
secutive keys don’t overlap in the analysis. We use a second-order
IIR Butterworth high-pass filter with 600Hz cutoff frequency. An

 2

example of a filtered keystroke is shown in the lower part of
Figure 2. The filtering also removes the low-frequency hum that is
common in laptop microphones.

After the filtering, the maximum absolute value of the input
signal is found within the analysis window and mapped to the gain
of the played samples. Alternatively, the RMS (square root of the
mean of squared signal values) of the window can also be used.
The maximum value is easy to visualize, as shown in Figure 1. On
the other hand, RMS is less sensitive to noise because it is an
averaged feature.

Note that the term ‘velocity sensitive’ is used here only to ad-
here to the common terminology of musical keyboards and MIDI.
A MIDI note-on message contains a velocity parameter [11], but
we are not measuring the true velocity of a key. The sound of a
keystroke is proportional to kinetic energy absorbed from the key,
which is a function of velocity, but also a function of unknowns
such as the physical coupling and masses of the key and the
player’s body parts. The validity of velocity as a control parameter
depends on the synthesis method. For physically based synthesis,
analyzing key sounds can actually be considered more realistic, as
real vibration gets mapped to simulated vibration.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−1

−0.5

0

0.5

1

In
pu

t

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−1

−0.5

0

0.5

1

Time (seconds)

In
pu

t (
fil

te
re

d)

Figure 2. Raw and high-pass filtered keystroke audio.

2.3. Latency

For real-time playing, it is crucial to minimize the latency of the
system, that is, the delay between a keystroke and the start of a
synthesized note. Latencies of less than 10ms are often suggested
for musical controllers [12][13]. Finney has shown that delay in
auditory response can cause large errors in the performance of
pianists [14]. However, Sawchuck et al. suggest that latency toler-
ance is dependent on the piece of music and instrumentation [15].

Latency is mainly caused by the following three components:

1. The size of the audio analysis window. There’s a tradeoff
between latency and the robustness of the analysis re-
sults. Shorter window sizes yield lower latency, but more
random dynamics information. In an informal test with
five users who played the prototype in maximum value
detection mode, the preferred analysis window sizes
ranged from 10 to 35ms, with median 12ms. The optimal
value depends on each player’s tolerance for latency and
imprecision of dynamics. A player with ten years of

drum playing experience commented the latency was not
annoying with window sizes less than 10ms, but the dy-
namics were better above 10ms.

2. Audio hardware and drivers. MacMillan et al. report
audio input-output latencies as high as 60-120ms in the
Windows operating system with DirectSound drivers of
consumer audio hardware [16]. In the test system, the
ASIO4ALL driver reports less than 1 ms output latency
and 4.4 ms input latency. This was confirmed by our
measurements.

3. Keyboard hardware and drivers, that is, the delay be-
tween the actual key press and the notification of a key
event in the software. Unfortunately, DirectInput does
not provide information about keyboard latency. In the
test system, a key event arrives within 1ms of the sound.
Combined with the 4.4 ms audio input latency, this indi-
cates approximately 5 ms of keyboard latency.

In addition to the components above, there are random small
latencies related to operating system thread scheduling. Neglecting
these, the total latency becomes max[Lk,(Lai+Lw)]+Lao, where Lk is
keyboard latency, Lai is audio input latency, Lw is the length of the
analysis window and Lao is the audio output latency. Only the
larger one of Lk and Lai+Lw has an effect – information about key
location and dynamics can arrive asynchronously, but both are
needed for generating a note-on message for the synthesis. The
analysis window can be shifted in relation to keyboard events so
that the sound of a key starts at the beginning of the window.

2.4. User Interface

The user interface of the prototype has sliders for adjusting the
analysis window size (key event delay) and shift. Additionally, an
input level meter helps in adjusting microphone input gain.

To visualize the analysis, the user interface shows the contents
of the analysis window, that is, rectified input recorded after the
last keystroke. The window shows how much of the sound fits
inside the window and what part of the waveform gets analyzed.
The horizontal grey line shows the detected velocity. An adjust-
able velocity curve allows fine-tuning the dynamics. The line from
the waveform display continues to the velocity curve so that the
user sees its effect on the detected velocity.

The velocity curve is essential, since the dynamic behavior of
a laptop keyboard is quite nonlinear. The sound typically consists
of several parts: the soft sound of a finger hitting the key, the
spring mechanism, and the sound of the key colliding against the
laptop when fully depressed. The collision is a particularly nonlin-
ear component, as it becomes audible only when a key is pressed
hard enough to reach the limits of its movement range.

3. DISCUSSION

At the time of writing this, the prototype has been tested by seven
people with several years of musical training. All of them were
very enthusiastic about the software, although it can take time
adjusting to play on a laptop keyboard. The keys are small so that
it is easy to accidentally hit two keys at the same time. To maxi-
mize the accuracy of the detected velocity, you should also avoid
hitting the body of the laptop with your palms when playing.
The prototype has the same limitations as ‘real’ velocity sensitive
musical keyboards. Keyboards are best for controlling instru-

 3

ments, where notes are isolated events that are not interacted with
once triggered. Examples of this are piano and many percussion
instruments, at least if only considering a subset of playing styles.
A keyboard is not an ideal control device for continuously con-
trolled instruments, such as woodwinds and bowed strings (see,
e.g., Paradiso and O’Modhrain [17]).

Another limitation of laptop keyboards is that they are not
built to handle several simultaneous key presses. Keys can block
each other, which makes the keyboard best for playing melodies
and percussion instead of chords. For chord support, the audio
analysis should also be improved, as it cannot currently determine
the individual velocities of simultaneously pressed keys.

We used a sampled djembe drum in our tests, which worked
well. Several samples were recorded by hitting the drum at vary-
ing locations and varying intensities. In the synthesis, key location
was mapped to hit location. In this aspect, a qwerty keyboard has
more freedom than a piano keyboard. We mapped each row of
keys to different distance from the center of the drum membrane.

4. CONCLUSIONS AND FUTURE WORK

We have presented a prototype of velocity sensitive keyboard
software that combines information from a regular keyboard and a
microphone. A demonstration video can be downloaded from
http://www.tml.tkk.fi/~pjhamala/keyboard/. The software has been
received with enthusiasm by end users, although there’s a tradeoff
to be made between latency and accuracy of dynamics. The soft-
ware is not ideal for live performance due to interfering sounds,
but it appears promising for headphone use in a reasonably quiet
environment.

We aim to integrate the software with other musical tools, e.g.,
as a PD external. In software/hardware environments with high
latency, the software can be used with non-real-time musical
editors such as step recorders. There may be other applications to
explore too, such as measuring the emotions of the user. A com-
puter game study by Brown and Sykes suggests that the pressure
used to press the buttons on a gamepad varies as a function of
game difficulty [18].

The user interface is currently quite technical and probably not
very intuitive for the less audio savvy users. The interface could
be simplified by determining the correct analysis window shift
automatically, possibly via onset detection of keystroke sounds.
However, adjusting the shift changes the feel of the keyboard, and
in preliminary tests, automatic changes while playing felt awk-
ward. This indicates that manual control should be at least an
option, and more user studies are needed to make the interface
more intuitive.

5. ACKNOWLEDGEMENTS

The work has been partly funded by Academy of Finland.
Hämäläinen came up with the original idea and developed the
software based on an initial PD-prototype implemented by
Kanerva. This report was written by Hämäläinen and Mäki-Patola.

6. REFERENCES

[1] Van Veen, T., Laptops & Loops: The Advent of New Forms
of Experimentation and the Question of Technology in Ex-

perimental Music and Performance. Presented at UAAC
2002, University of Calgary, Alberta.

[2] Granucon Virtual MIDI Keyboard, http://www.granucon.
com/vmk.html, link visited 26th Jan 2006

[3] VKeys virtual midi keyboard, http://www.tml.tkk.fi/
~pjhamala/vkeys/, link visited 26th Jan 2006

[4] Furukawa, K. and Dutilleux, P., Live-electronics Algorithms
in the Multimedia Work ‘Swim Swan’, Proceedings of the
5th Int. Conference on Digital Audio Effects (DAFx-02),
Hamburg, Germany, September 26-28, 2002

[5] Igarashi, T. and Hughes, J.F., Voice as Sound: using non-
verbal voice input for interactive control, Proceedings of
Symposium on User Interface Software and Technology
(UIST’01), ACM Press, 2001

[6] M-AUDIO Oxygen 8 keyboard, http://m-audio.com/ prod-
ucts/en_us/Oxygen8-main.html, link visited 25th Jan 2006

[7] Phidgets Inc., http://www.phidgets.com/, link visited 26th
Jan 2006

[8] ASIO4All Universal ASIO Driver, http://www.asio4all.com/,
link visited 26th Jan 2006.

[9] Bencina, R., Burk, P., PortAudio – an Open Source Cross-
Platform Audio API, Proceedings of International Computer
Music Conference (ICMC’01), 2001, available online at
http://www.portaudio.com/docs/, link visited 26th Jan 2006

[10] Microsoft DirectInput Overview, http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/dninput/html/diov.asp,
link visited 26th Jan 2006

[11] Heckroth, J., Tutorial on MIDI and Music Synthesis,
http://www.harmony-central.com/MIDI/Doc/tutorial.html,
link visited 26th Jan 2006.

[12] Freed, A. Chaudhary, A. Davila, B., Operating Systems
Latency Measurement and Analysis for Sound Synthesis and
Processing Applications, Proceedings of International Com-
puter Music Conference (ICMC’97), 1997

[13] Wright, J. Brandt, E. System-Level MIDI Performance Test-
ing, Proceedings of the International Computer Music Con-
ference (ICMC 2001), 2001

[14] Finney, S.A., Auditory Feedback and Musical Keyboard
Performance. Music Perception, vol. 15, no. 2, pp 153-174,
1997

[15] Sawchuk, A. A. Chew, E. Zimmermann, R. Papadopoulos, C.
Kyriakakis, C., From Remote Media Immersion to Distrib-
uted Immersive Performance. Proceedings of 2003 ACM
SIGMM workshop on Experiential Telepresence, 2003

[16] MacMillan, K., Droettboom, M. and Fujinaga, I. Audio
Latency Measurements of Desktop Operating Systems, Pro-
ceedings of International Computer Music Conference
(ICMC’01), 2001

[17] Paradiso, J.A., O’Modhrain, S., Current Trends in Electronic
Music Interfaces, Journal of New Music Research, Vol. 32,
No. 4, 2003

[18] Sykes, J. and Brown, S., Affective gaming: measuring emo-
tion through the gamepad, CHI '03: CHI '03 extended ab-
stracts on Human factors in computing systems, pp. 732-733,
ACM Press, 2003

