
Reflectance Modeling by Neural Texture Synthesis

Miika Aittala
Aalto University

Timo Aila
NVIDIA

Jaakko Lehtinen
Aalto University, NVIDIA

Differentiable neural texture comparisonSVBRDF estimate Input image

y0

y1

yN-1

x0

Images
x0-xN-1

Current
SVBRDF

GradientsUpdates

Render from N
light directions

Refine
SVBRDF
estimate

Iterative
update loop

y0

...

y2

Images
y0-yN-1

x1

y1

x2

y2

xN-1

yN-1

Figure 1: Our algorithm synthesizes a spatially varying BRDF that closely matches the input flash image when rendered from different lighting
directions. The optimization process iteratively updates the current estimate based on neural network-based texture statistics comparisons that
are able to ignore the precise pixel arrangement inside image tiles. This snapshot is from an early stage of the optimization.

Abstract

We extend parametric texture synthesis to capture rich, spatially
varying parametric reflectance models from a single image. Our in-
put is a single head-lit flash image of a mostly flat, mostly stationary
(textured) surface, and the output is a tile of SVBRDF parameters
that reproduce the appearance of the material. No user intervention
is required. Our key insight is to make use of a recent, power-
ful texture descriptor based on deep convolutional neural network
statistics for “softly” comparing the model prediction and the ex-
amplars without requiring an explicit point-to-point correspondence
between them. This is in contrast to traditional reflectance capture
that requires pointwise constraints between inputs and outputs under
varying viewing and lighting conditions. Seen through this lens, our
method is an indirect algorithm for fitting photorealistic SVBRDFs.
The problem is severely ill-posed and non-convex. To guide the
optimizer towards desirable solutions, we introduce a soft Fourier-
domain prior for encouraging spatial stationarity of the reflectance
parameters and their correlations, and a complementary precondi-
tioning technique that enables efficient exploration of such solutions
by L-BFGS, a standard non-linear numerical optimizer.

Keywords: material appearance, appearance capture, SVBRDF,
convolutional neural networks, texture synthesis

Concepts: •Computing methodologies → Reflectance modeling;
Texturing; Neural networks;

1 Introduction

Surface reflectance is important for visual realism. In this work, we
attempt to capture and reproduce surface appearance by synthesizing
a spatially-varying parametric reflectance model based on a single
image of a flat, textured surface.

Traditionally, methods for capturing realistic spatially-varying sur-
face reflectance, e.g., [Debevec et al. 2000; Lensch et al. 2003], fit a
model to measurements taken under varying viewing and lighting
conditions. They either make use of heuristics or rely on non-linear
numerical optimization and an explicit, predictive mathematical
model of the surface and the capture process to find parameters that
yield the best reproduction. Building the model can be challenging,
particularly if one wishes to gain efficiency by sharing measurements
between similar surface points. To date, single-image capture of
materials with rich spatial variation has remained elusive.

On the other hand, texture synthesis algorithms, e.g., [Heeger and
Bergen 1995; Efros and Leung 1999], view surface texture as a
stochastic process, and aim to produce new realizations that resemble
an input exemplar by either copying pixels (non-parametric methods)
or matching image statistics (parametric techniques). While these
methods can also trivially be used to produce new realizations of
existing SVBRDFs, one still needs to somehow author or capture an
exemplar that can be given as input to the synthesis.

We present an algorithm that shares properties of both texture synthe-
sis and reflectance capture. Like reflectance capture, our goal is to
produce explicit, spatially-varying parametric BRDFs (SVBRDFs)
that, when rendered, yield images that match the appearance of the
input exemplar. Yet, analogous to texture synthesis, we produce
stochastic realizations that do not directly correspond to any existing
region in the input image. At heart, our algorithm employs the same
core idea as parametric texture synthesis: an optimizer drives the
SVBRDF solution towards values that produce renderings whose
appearance matches the inputs in a statistical, soft sense. Instead of
producing several novel realizations of texture, however, our goal is
to summarize the texture seen in the large input image into a small,
relightable SVBRDF tile, making use of the fact the input image
contains regions with different illumination, cf. Figure 1. To the
best of our knowledge, this general approach is novel.

Note that as non-parametric texture synthesis methods are based on
copying pixel values from the exemplar onto the solution, they do not
help achieve our goal: the exemplar is an RGB photo and the desired
solution is a multi-channel SVBRDF map. In contrast, parametric
texture synthesis methods work by iteratively modifying the solution
until its chosen statistics match those of the exemplar. This suggests
inserting a rendering operation — a differentiable function from
SVBRDFs to RGB images — into the objective function to drive
the search. This is precisely the approach we take. In particular, we
build on the recent parametric texture synthesis method of Gatys et al.

To appear in ACM Transactions on Graphics (Proc. SIGGRAPH 2016)

This is an author-prepared preprint. The definitive
version appears in the ACM Digital Library.

[2015b], who introduce a texture descriptor built on the statistics
extracted from the activations of a deep convolutional neural network
(CNN) originally trained for image classification, and present state-
of-the-art results that closely rival those of non-parametric methods.

Concretely, given a single head-lit flash image of a flat, textured
(stationary) surface, our method recovers a small tile of SVBRDF
parameters that reproduces the appearance of any region of the input
when rendered under its illumination. We do this by solving

argmin
u

∑
k
‖TG(R(u; lk))−TG(yk)‖, (1)

where u are the unknown SVBRDF parameters (a single tile of
n× n pixels, with n ∼ 256), we loop over different exemplars yk
with different lighting conditions lk, R is the rendering operator that
relights the SVBRDF in lighting condition lk, and TG computes the
CNN-based texture descriptor for its input image.

This is a hard optimization problem. Due to their non-convexity,
both texture statistics matching and SVBRDF fitting are challenging,
even in isolation. Additionally, the fitting is ill-posed in the sense
that the same observed pixel values can be explained by many differ-
ent SVBRDFs. Combining these tasks is likely to exacerbate these
issues, and indeed, our optimizer may, in this basic formulation,
fall into poor local minima. To encourage balanced convergence
towards high-quality solutions and mitigate issues related to ill-
posedness, we describe a soft Fourier-domain prior to encourage the
individual and joint local statistics of the reflectance parameters to
remain constant over the solution, guiding the solver to explain simi-
lar observed behavior using similar combinations of the parameters
regardless of spatial location. To further aid efficient numerical ex-
ploration of such solutions, we introduce a preconditioning scheme
that makes spatially stationary descent directions easier to discover.

As we match the rendered output with the input photograph only in a
statistical sense, our objective function is much more ambiguous and
thus harder to optimize than those of traditional reflectance capture
methods. Nevertheless, we find that many of the results capture the
overall feel and the fine structure of the inputs well.

In summary, our contributions are

• The observation that soft image comparison based on CNN tex-
ture statistics can be robust enough to drive a hard reflectance
fit problem with hundreds of thousands of free variables into a
meaningful solution.

• A method for fitting SVBRDF model parameters to a single
image of a textured head-lit surface without requiring explicit
point correspondences between image patches.

• A soft Fourier-domain prior and a jointly designed precondi-
tioner for encouraging stationarity of model parameters.

2 Related Work

2.1 Texture Synthesis

Starting from a random initial guess, the parametric approach to
texture synthesis uses local optimization to match the generated
image x and a texture exemplar y by minimizing their difference in
terms of a texture statistics descriptor T :

argmin
x
‖T (x)−T (y)‖ (2)

Heeger and Bergen [1995] match histograms of filter responses in
a steerable pyramid, which works well for stochastic textures but

fails with more structured inputs. While their original implemen-
tation sequentially enforces a series of statistics, and thus does not
properly optimize Equation 2, well-defined stochastic optimization
with sliced Wasserstein distance is possible [Rabin et al. 2011].
Portilla and Simoncelli [2000] consider also autocorrelation and
cross-correlation statistics. Their results remained state-of-the-art
in parametric texture synthesis until the recent CNN-based work
by Gatys et al. (cf. Section 2.2 below). However, their method is
also limited to sequentially enforcing different statistics, and does
not optimize a well-defined distance metric. Random phase noise
has long been popular in parametric synthesis (e.g. [Galerne et al.
2010]), but is limited to stochastic (non-structured) textures.

Visually, the most successful texture synthesis methods to date are
of the non-parametric kind that copy pixels or blocks of pixels from
the exemplar [Efros and Leung 1999; Efros and Freeman 2001;
Hertzmann et al. 2001]. However, it is unclear how they could be
used to synthesize an entire material representation (albedos, surface
normals, specularity, etc) that looks like an example texture patch
after relighting, as such information is not directly available in the
exemplar and thus cannot be copied. While a non-parametric textural
similarity metric can be defined and optimized [Kwatra et al. 2005;
Kaspar et al. 2015], the discrete and combinatorial nature of this
metric would lead to an unwieldy optimization task when combined
with reflectance fitting.

Many texture synthesis methods can be straightforwardly applied to
produce more SVBRDF texture from a small readily solved exemplar
— for example, Aittala et al. [2015] suggest using Image Quilting
[Efros and Freeman 2001] for this purpose. Tong et al. [2002] syn-
thesize Bidirectional Texture Functions on 3D models, given an
exemplar. We address the orthogonal problem of solving for the
SVBRDF in the first place. Wei et al. [2008] propose a related uncon-
ventional use of texture synthesis. Their method reverses the usual
procedure by producing a small texture exemplar that summarizes
the content of a large (nonstationary) input image. Analogously, we
produce a small “SVBRDF summary” of an input flash image. How-
ever, there appears to be no obvious way to adapt their algorithm to
our goals.

2.2 CNN-Based Texture Statistics Descriptor

Convolutional neural networks (CNN) have recently been used in a
wide range of tasks, including image classification [Szegedy et al.
2015] and object localization [Huang et al. 2015], with consistently
good results. It is particularly relevant to our approach that the
features learned while training for one task can be remarkably useful
when used for a completely different task [Razavian et al. 2014].

CNNs consist of a sequence of layers that apply a set of convolution
kernels to input from the preceding layer, followed by a non-linear
mapping [LeCun et al. 1998]

al
i = σ(∑

j
al−1

j ∗ kl
i j). (3)

Here ∗ denotes convolution, al
i is the scalar 2D image of the ith

activation on the lth layer, kl
i j is the jth 2D convolution kernel

associated with output activation i at level l, and σ is typically a
rectified linear unit, i.e. max(0, ·). The process is bootstrapped by
considering the input RGB image as a layer with three activations.

Relevant to our goal, Gatys et al. [2015b] use the pre-trained VGG-
19 [Simonyan and Zisserman 2014], a deep CNN that was trained
for image classification, and intriguingly, show that ensembles of
Gram matrices that describe statistics of network activations on the
convolutional layers form an excellent descriptor of texture, and
even low-level artistic style [Gatys et al. 2015a]. (Fully connected

To appear in ACM Transactions on Graphics (Proc. SIGGRAPH 2016)

a) Searching for a matching scale b) Inverse perspective (rectification) c) Blind deconvolution
s=0.5 s=1.0 s=2.0

0.3	

1.3	

2.3	

0.50	 0.60	 0.80	 1.00	 1.20	 1.50	 1.80	2.20	

Exemplar y Input z at various scales + loss Input Output Sharp
exemplar y

Unknown
x, k

Observed
x̃ = x∗k

TV Our

Figure 2: Toy examples. Using the texture descriptor TG for a) determining the matching scale between textures, b) rectifying a perspective
image, and c) using a second image of the same material as a prior in blind deconvolution instead of a total variation (TV) smoothness term.

layers are omitted.) For the lth convolutional layer, the entries of the
Gram matrix Gl are given by

Gl
i j = mean{al

i �al
j}, (4)

where � denotes entrywise product. The descriptor TG(x) is ob-
tained by vectorizing the Gram matrices and concatenating them
together across different layers with per-level weights wl

G applied:

TG(x) =
[
w1

G vec(G1), w2
G vec(G2), . . . w#layers

G vec(G#layers)
]
(5)

Here vec(·) takes in a matrix and reorders its elements into a row
vector. (The precise order is irrelevant as long as it is constant.)
Comparing two descriptors TG(x) and TG(y) happens by simply
evaluating a vector norm ‖TG(x)− TG(y)‖. We use the L1 norm
instead of L2. This has a small positive effect on our results.

To synthesize a texture using the descriptor, the algorithm starts
from random noise. The current image x is iteratively fed to the
CNN, the descriptor TG(x) evaluated, its difference to the exemplar’s
descriptor TG(y) computed, and finally the image is updated so that
the difference is reduced. Since TG is (piecewise) differentiable, the
gradient ∂‖TG(x)−TG(y)‖/∂x can be computed efficiently using
backpropagation and used for numerical optimization. Gatys et al.
demonstrate state-of-the-art results in parametric texture synthesis.
We base our synthesis algorithm on theirs.

2.3 Reflectance Capture

Weyrich et al. [2009] provide a comprehensive overview of re-
flectance capture from radiometric measurements. Even assuming
pure surface reflection (no subsurface scattering), a dense sampling
over the entire 6D space of surface position, lighting direction, and
view direction is cumbersome. Hence, various assumptions about
the underlying reflectance are relied on to reduce data volume, com-
plexity of the capture process, and computational requirements. For
instance, several techniques exploit homogeneity or “texturedness”
where many surface points share a common appearance [Lensch
et al. 2003; Zickler et al. 2006; Wang et al. 2008; Dong et al. 2010;
Aittala et al. 2015]. A major challenge in these methods is to explic-
itly identify which points share apperance. Our key contribution is
a method that similarly relies on repetition to share information be-
tween surface points, but does not require explicit correspondences.

Reflectance can be extracted from a single image aided by strong
assumptions — for instance diffuse only, e.g., [Barron and Malik
2015] or spatial homogeneity and known geometry [Boivin and
Gagalowicz 2001]. While we also make use of a strong assumption
(texturedness), we aim to support more general reflectance with
per-pixel variations in glossiness, albedos, and normals. Another
class of methods relies on user input for interactive modeling, e.g.,

[Clark 2010; Dong et al. 2011]. We aim to perform a full model fit
without user intervention.

Tools from texture synthesis have only rarely been applied in re-
flectance capture. Wang et al. [2011] capture the surface normal
statistics from perfectly specular surfaces from a single image un-
der step illumination. The range of spatial structures and materials
that lead to faithful synthesis results is narrow compared to our full
SVBRDF models. Ngan and Durand [2005] model Bidirectional
Texture Functions of stochastic materials by the steerable pyramid
statistics computed from images of samples taken under different
viewing and lighting conditions. They relight by forcing the mea-
sured statistics onto a “master” image using the Heeger-Bergen
algorithm. While their method is purely data-driven and does not
result in an explicit SVBRDF map, it is an important inspiration to
us, as they make use of image statistics matching for reflectance
modeling. Aittala et al. [2015] also employ Heeger-Bergen as part
of their textured SVBRDF capture pipeline to massage intermediate
fitting results to look more like the input images. Unlike us, they do
not make use of statistics during the model fit, but instead rely on ex-
plicit point correspondences estimated from a guide image. Texture
synthesis has also been applied as a post-process for transferring
captured facial reflectance [Weyrich et al. 2006] and enhancing its
microgeometry [Graham et al. 2013].

3 Model Fitting by Neural Texture Statistics

Traditional parametric texture synthesis (Equation 2) directly alters
the colors of pixels in the result x so that its texture descriptor T (x)
would match that of the exemplar T (y). As we desire to reproduce
appearance by an analytic reflectance model, our unknowns are per-
pixel reflectance parameters that cannot be directly optimized in the
same framework: comparison between reflectance parameters and
exemplar images is meaningless.

To enable optimizing for model parameters instead, we introduce a
mapping f (p) that, given parameters p, produces an image x, i.e.,
x = f (p). The question now becomes how to choose the model
parameters p such that the descriptors match between f (p) and y:

argmin
p
‖T (f (p))−T (y)‖. (6)

This forms the core of our approach.

Before describing our main application, we begin with a few toy
examples of model fitting using CNN-based texture statistics. We
strongly emphasize that these examples do not constitute attempts
to advance the state of the art in any of the associated problems.

Toy Example 1: Find texture scale (1D) Our simplest example
is a 1D optimization for estimating scale (zoom level) of a given
texture, given a reference realization. More precisely, we are given

To appear in ACM Transactions on Graphics (Proc. SIGGRAPH 2016)

an exemplar y of a texture, and another realization z of the same
texture imaged at a different (unknown) scale. The problem is
to find the scale s where the zoomed input matches the exemplar:
argmin

s
‖TG(scale(z,s))−TG(y)‖.

Figure 2a plots the descriptor difference over scale s for two different
crops of the same texture, leading to the correct minimum around
1.0. (It is typical that the loss function does not reach zero.) We
observe similar behavior over a range of different input textures, and
conclude that the descriptor TG robustly identifies scale for highly
similar textures. Comparing visibly different exemplars, e.g., brick
wall of different composition or color, does not yield robust results.

Toy Example 2: Texture rectification (3D) A slightly more com-
plex toy example is the automatic rectification (inverse warping) of
a texture under perspective, a simple form of a shape-from-texture
problem [Super and Bovik 1995]. Under the correct inverse warp,
the local statistics of a homogeneous texture should be similar in
all suitably large neighborhoods. Using a three-parameter model
for perspective distortion (f for field of view, θx for pitch, θy for
yaw) of a plane through the origin, and assuming the input image x
is generated by the mapping warp(f ,θx,θy;x), we solve for

argmin
f ,θx,θy

N

∑
i=1

N

∑
j=1
‖TG(E(warp−1(f ,θx,θy;x), i))−

TG(E(warp−1(f ,θx,θy;x), j))‖ (7)

where warp−1(f ,θx,θy;x) performs the inverse warp of the input
image x, and E(·, i) extracts the ith subregion from the image. Fig-
ure 2b shows a result using a real (non-synthetic) input image using
N = 4 regions. We find that texture similarity across regions robustly
identifies a perspective transform that results in visually homoge-
neous inverses. Note that unlike most shape-from-texture algorithms,
we do not attempt to reason about the effect of perspective projection
on the statistics and rely on brute force optimization instead.

Toy Example 3: Texture prior for blind deconvolution Given
a single blurred image x̃, blind deconvolution methods aim to si-
multaneously recover a sharp image x and the blur kernel k most
likely to have produced the observed image through convolution:
x̃ = x∗k (the latter two are unknown). As the problem is severely
ill-posed, priors such as sparse derivatives or total variation are used
for picking out the solution that most resembles a natural image.

In our final, most complex example, we assume that in addition to
a blurred image of a textured surface, we assume a different sharp
exemplar y of the same texture is given as input to the algorithm.
We proceed to simultaneously minimize

argmin
x,k

‖x∗k− x̃‖+λ‖TG(x)−TG(y)‖ (8)

where the first term encourages the convolved result to match the
input, the second term encourages the result to be similar to the sharp
input exemplar y in terms of the texture descriptor, and λ = 0.01 is
a mixing weight. Figure 2c shows an example. Note how the true
solution x and exemplar y are quite different pixel to pixel; yet the
texture prior is powerful enough to drive this optimization problem
with ∼ 200K variables to a much more reasonable solution than the
standard total variation (TV) prior. We performed the optimization
using L-BFGS. Again, we stress that the comparison to TV is not
fair as we use more information, and fully acknowledge that this
method is not applicable to general images.

In summary, we have observed that texture descriptor TG can be used
for guiding nontrivial optimization problems. We will now tackle
the full SVBRDF recovery problem.

flash
light dir.
view dir. camera

surface to
be captured

image tile

mobile phone

for points in tile,
light dir. ≈ view. dir e≈

Figure 3: Imaging setup. Image courtesy of Aittala et al. [2015]

4 Method

Given a head-on flash image of a mostly flat textured surface, our
aim is to find an SVBRDF that, when rendered, produces similar
photorealistic texture as that found in the input. We approach this
by representing the unknown material as a single tile of SVBRDF
parameters, and comparing its renderings to several different patches
of the input image in terms of how well they match in terms of a
texture descriptor. Note that the images cannot be directly compared
pointwise using e.g. squared pixel differences — as would be done
in standard reflectance capture — because the textural features are
arranged differently in each input tile.

Input data The input image is a fronto-parallel image of a mostly
flat surface under headlight illumination (i.e., the light source is
very close to camera). The setup, shown in Figure 3, is similar
to that used by Aittala et al. [2015]. The shooting geometry is
invariant to distance, up to an unknown and irrelevant global scale.
Due to headlight illumination, the lighting and viewing directions
are equal at each individual pixel (= a backscatter measurement),
but vary between pixels. At each pixel, the lighting conditions are
determined by the half-vector e ∈R3 and an irradiance value I ∈R3.
They are simple to estimate based on the position of the highlight
center in the image (computed as the centroid of the positions of
the 5% brightest pixels), the known field-of-view of the camera, and
known angular distribution of flash emission (cf. Appendix).

Output data The unknown SVBRDF is a multi-channel image
tile u of size n× n, with n around one tenth of the input image
width. At each pixel j, the vector of unknowns u j consists of the
diffuse albedo ρd ∈ R3, specular albedo ρs ∈ R3, glossiness α ∈ R,
and surface normal n ∈ R3. We denote the rendered result in the
given lighting conditions by R(u;e,I). To render, we use the Blinn
reflectance model:

R(u;e,I) = Imax(0,e ·n)(ρd +ρs max(0,e ·n)α) . (9)

4.1 The Loss Function

Concretely, we seek an SVBRDF u of size n×n that solves

argmin
u

∑
k
‖TG(R(u;ek,Ik)) − TG(yk)‖. (10)

Here ek and Ik are the half-vectors and irradiances at each pixel in
the kth tile. To get a sampling of differently lit pieces of the target
material, we choose a set of 15 tiles yk of the same size n×n from
the input image y around the highlight center (cf. Figure 1).

Problem properties As pointed out in Section 1, both the re-
flectance fitting and texture statistics matching are hard, non-convex
problems. Thus it can be expected that the combined problem is

To appear in ACM Transactions on Graphics (Proc. SIGGRAPH 2016)

Non-stationary texture Stationary texture

Figure 4: These two textures are equally close to the exemplar in
terms of the descriptor TG: the CNN statistics are not strong enough
to enforce stationarity of synthesis results.

at least as hard. A particularly interesting issue that shows up im-
mediately is stationarity, by which we mean spatial homogeneity,
“looking the same” across the image (we will be more precise later).
In our experience, given a stationary initial guess, e.g. white noise,
the method of Gatys et al. [2015b] produces a stationary result. How-
ever, there is nothing in their formulation that explicitly enforces
this. Figure 4a demonstrates that non-stationarity is not captured by
the position-oblivious Gram statistics (Equation 4): while the left
image has large-scale contrast variation, its descriptor distance to
the exemplar is the same as that of the right, stationary image.

Given the above, it is to be expected that any non-stationarity intro-
duced in the course of optimization will remain as it is not penalized
in any way. This is indeed what we observe if we attempt to directly
minimize Equation 10: even through the initial guesses are sta-
tionary, non-stationarity is immediately introduced to the SVBRDF
parameter maps, and hence the renderings, by the badly conditioned
reflectance fit that tends to greedily favor different explanations for
similar observed reflectance in different parts of the tile.

We address this by introducing a prior that encourages the SVBRDF
parameters to be individually stationary (have the same local mean
and same local variance everywhere), and jointly stationary (have
the same local correlation everywhere). This prior is quite loose:
it does not encourage particular values for particular variables or
penalize non-smoothness. It merely says “above some scale, look
the same everywhere; and when you conspire with another variable,
do it in the same way everywhere”. Details are given in Section 4.3.
Figure 5 show an example of the tempering effect of the priors.

In addition to the stationarity prior, we find that a frequency-domain
preconditioner that weights spatial frequencies by weights derived
from the input image tiles yk helps the optimizer find good descent
directions that leads to reasonably uniform convergence across the
image. In practice, this means we internally represent the SVBRDF
components as the conjugate symmetric parts of their Fourier trans-
forms. Full details are given in Section 4.4, along with other choices
of parameterization. Figure 5 demonstrates its effect on convergence.

Full loss function All together, our entire problem is

argmin
ũ

∑
k
‖TG(R(P(ũ);ek,Ik)) − TG(yk)‖+λQ(P(ũ)), (11)

where P(ũ) is the preconditioner that evaluates the primal-domain
SVBRDF parameters u (and other terms required by the prior) given
the raw optimization variables ũ, and Q(·) is the prior (Section 4.3).
The weight λ is set to the number of tiles multiplied by 0.001.

Finally, to enable gradient-aware local optimization, we need the
derivative of the loss function w.r.t. the internal parameters. This is
easily obtained from the chain rule:

∂ loss
∂ ũ

=

∑
k

∂‖TG(x)−TG(y)‖
∂x

=R(u)
∂x
∂u

=P(ũ)
∂u
∂ ũ

+ λ
∂Q
∂u

∂u
∂ ũ

. (12)

No priors Our Priors

N
o

pr
ec

on
di

tio
ni

ng
L

ap
la

ci
an

p y
ra

m
id

O
ur

pr
ec

on
di

tio
ni

ng

Figure 5: The effect of priors and preconditioning, visualized by
the effect they have on the solution normal map of the leather amber
dataset after 100 L-BFGS iterations. The columns: Solutions com-
puted without and with the stationarity priors. The rows: Solutions
computed using no preconditioning, a Laplacian pyramid precon-
ditioner, and our preconditioner. Priors improve stationarity for
all preconditioners. Without preconditioning, the solution has not
progressed very far from the initial guess. Laplacian pyramid pre-
conditioning helps somewhat, and our preconditioning gives a much
more detailed and believable result. This is not surprising, as our
priors and preconditioner are designed jointly. On the last row, note
how the prior helps remove the non-stationarity from the otherwise
plausible solution.

Gatys et al. [2015b] describe how to compute the gradient
∂‖TG(x)−TG(y)‖/∂x using the standard backpropagation machin-
ery from convolutional neural networks. We build on the same
machinery to evaluate our additional terms: the derivative of the
rendered result w.r.t. the SVBRDF parameters ∂R/∂u, the prior
∂Q/∂u, and the preconditioner ∂P/∂ ũ. Note that explicit full Ja-
cobians are never required by L-BFGS, and would be infeasible to
compute; we only ever need the gradient of the scalar loss function.
Additional details on the optimization are given in Appendix A.

Figure 6 visualizes the entire computation graph used for evaluating
the objective, the prior, and the preconditioner. The reader may
want to refer to it during the next sections, when we describe the
individual components.

4.2 Texture Descriptor Computation

We first pre-process both the input photo and the corresponding
rendered tiles into a format suitable for the CNN. The VGG network
was trained with natural images in the range [0,255], with mean
subtracted. Hence, we expect the descriptor to work best with
similarly formatted inputs. Furthermore, transforming each tile to a
similar range of pixel values results in more balanced convergence,
as each tile will produce objective values in a similar range regardless
of its intensity and contrast.

With this in mind, we first clamp the rendered values to 1 to emulate
saturation of the camera pixels. We then normalize the images ac-
cording to the local statistics of the input images before evaluating
the descriptor TG. See Figure 7 for an illustration. We first estimate
the local mean and standard deviation of the input image by comput-
ing ymean = blur(y) and yσ =

√
blur((y−ymean)2). To normalize

an image x of the kth tile, be it either a rendering or the original
yk, we first subtract the corresponding tile of the strongly blurred

To appear in ACM Transactions on Graphics (Proc. SIGGRAPH 2016)

 Priors

Preconditioning Texture descriptorRendering

Glossiness

Height

Specular albedo

Specular chroma

Diffuse albedo

Eye e

Illumination Ik
Tile from blurred
input image, blur(yk)

Input tile texture
descriptor TG(yk)

subtract
mean

pow3

pow4

cross-
multiply

FFT magnitude weight norm

FFT magnitude weight norm

FFT magnitude weight norm

FFT magnitude weight norm

YUV-1

[y,x]

exp + 10

mul mul add mul clamp

to unit
sphere dot max(0,·)

pow

unpack
spectrum weight FFT-1 Random

circshift

softclamp(·)

softclamp(·)

divide by
stddev

sub
adjust

dynamic
range

CNN TG(·) sub norm

x

concatenate

y

Input tile
stddev map yk

N N

3
Spectral preconditioning

σ

ρd

ρs

α

n

divide by
stddev

Figure 6: The detailed computation graph used for evaluating the preconditioner, priors, the loss function, as well as its gradient. The
computation is shown as a directed acyclic graph, where each node performs a single operation for which an explicit gradient computation is
simple. The forward evaluation follows the arrows, whereas the matching gradient backpropagation happens in the opposite direction along the
same arrows. Rendering and Texture statistics are executed for each N light directions, Preconditioning only once, and Priors three times. The
total loss is obtained by summing the bolded “norm” boxes from all instances of texture statistics and priors. softclamp(x) = 1

2 (x+(x2+ε)0.5).

Input image y After normalization(y−ymean)/yσ

Figure 7: The input image has significant lighting variation, which
is greatly reduced by local mean and contrast normalization (Sec-
tion 4.2). The bottom row shows closeups from top-left corner, center,
and bottom-right corner. After normalization, the regions look al-
most the same except for the lighting direction.

input image and pointwise divide by the local standard deviation:
(x− ymean

k)/(yσ
k + 10−4). Finally, we multiply all RGB values by

255 to match VGG’s expected dynamic range, and further by 0.2 to
match the typical range in photos it was trained with.

Note that this transformation does not bias the expected solution
because it is always performed using the statistics of the input tile.
Hence, the solution is still required to reproduce the colors, inten-
sity levels, and contrast of the original untransformed input. The
pre-processing helps the optimizer and the similarity metric by im-
proving the conditioning of the problem.

After pre-processing, the image is fed to the neural network for
statistics computation. We use the first 17 convolutional layers of a
pre-trained VGG-19 network [Simonyan and Zisserman 2014], with
average pooling instead of max pooling [Gatys et al. 2015b]. The
fully connected layers are omitted. The layer weights wl

G (Equa-
tion 5) are set to the number of output features of the respective
layer l, which gives more weight to the higher layers (e.g. w1

G = 64,
w3

G = 128, and w17
G =512). This weighting scheme was observed to

slightly but consistently improve the results over uniform weights.

4.3 Stationarity Priors

To prevent the situation where different parts of the SVBDRF end
up with radically different solutions, we explicitly require the re-
flectance parameters to be loosely stationary throughout the tile. By
stationarity, we mean spatial homogeneity of local statistics: mea-
sured over any sufficiently large region, the mean, (co-)variance,
skewness and kurtosis of the parameters should remain constant.
Our prior explicitly enforces this. Figure 8 illustrates the effects of
constant vs. varying statistics over a texture. Figure 8a,e,g show
stationary textures whose local mean and variance are constant
(skewness and kurtosis not shown). Compare this to Figure 8b,c
where respectively local mean and contrast vary slowly.

Our prior does not constrain the local statistics of the variables,
e.g. by encouraging or discouraging the variables to be correlated.
It merely states that if certain statistical features are present in a
given region, they should be present in others as well. This may be
contrasted with classical smoothness priors, which require similarity
between neighboring points, but are blind to the global picture.

4.3.1 Mean Value Prior

Let us first consider the mean. The prior should discourage behavior
where parts of the image are significantly brighter than others, i.e.,
the local average changes slowly over the image. Texture A1 in
Figure 8b shows an example.

Convolving the image with a low-pass filter measures local average.
If the result is a constant, any local average variations are smaller
than the size of the kernel. Conceptually, our prior evaluates this
convolution and penalizes any variation left. In practice, the prior
is efficiently implemented in frequency domain. As the low-pass
convolution is evaluated by weighting down all but low frequencies
in the Discrete Fourier Transform (DFT) of the parameter maps,
it is clear that a varying local average is directly visible in those
low (non-DC) frequencies. For example, the bottom row of Figure
8b shows energy inside the red circle. Concretely, we add to the
objective function

P1(u) = w1‖w f �F{u}‖2 (13)

where w1 = 3∗10−2 is the overall weight of the prior, F computes
the Fast Fourier Transform (FFT), w f is a frequency-wise weighting
and � denotes pointwise product. See Figure 6 for the DAG that

To appear in ACM Transactions on Graphics (Proc. SIGGRAPH 2016)

A A1 A2 C(A2)
2 B W (A)�W (B) B′ W (A)�W (B′)

Pr
im

al

1st and 2nd order
stationary (local mean and

variance constant)

Non-stationary, local
mean changes slowly

1st but not 2nd order
stationary (constant local
mean but not variance)

Centering and squaring
makes local variance

change visible

1st and 2nd order
stationary, dot pitch

different from A

A and B not jointly
stationary, local corr(A,B)

changes slowly

1st and 2nd order
stationary, dot pitch the

same as that of A

A and B′ jointly stationary,
constant local corr(A,B′)

F{A} F{A1} F{A2} F{C(A2)
2} F{B} F{W (A)�W (B)} F{B′} F{W (A)�W (B′)}

(ω
x,

ω
y)
∈
[−

10
,1

0]
2

Stationarity visible as lack
of non-DC low

frequencies

Non-stationarity visible as
non-DC low frequencies

No non-DC low
frequencies (change in

local variance not visible)

Non-DC low frequencies
reveal local variance

change

Stationarity visible as lack
of non-DC low

frequencies

Changing local corr(A,B)
visible in low frequencies

Stationarity visible as lack
of non-DC low

frequencies

Constant local corr(A,B′),
hence no low frequencies

a) b) c) d) e) f) g) h)

Figure 8: Illustration of constant vs. varying local statistics (cf. Sections 4.3.1 and 4.3.2)

implements this (and later) priors. For w f we use the magnitude
spectrum of a normalized Gaussian with standard deviation 1/6th of
the tile size, with the DC component zeroed. Ideally the size of this
filter would be proportional to the size of the textural features in the
input. However, we found this fixed value to work reasonably well.

4.3.2 Local Contrast, Correlation, and Higher Orders

The mean value prior eliminates the most obvious non-stationarities,
but leaves room for significant higher order variation: in particular,
while it forbids regions to have different means, it still allows them
to have arbitrarily different variances and covariances. We apply
similar reasoning as above to discourage such differences.

As variance is the second central moment, we begin by subtracting
the mean of each parameter map from itself. The local variance
is then measured by raising the centered maps to second power,
and locally averaging by convolution with a low-pass filter. Again,
any remaining spatial variation is visible as energy in the non-DC
low-frequencies of the Fourier transform, which is easily penalized
by a weighted norm on the spectrum like above:

P2(u) = w2‖w f �F
[
C(u)2

]
‖2 (14)

where w2 = 3∗10−5 and C(u) = u−mean(u) centers each of the
maps separately.

We further discourage nonstationarity by penalizing variations in
covariances between variables. To make the prior robust to the scale
of each individual variable (which also varies significantly across
materials), we further whiten each centered map by division with its
standard deviation; hence, we are in fact penalizing variations in the
normalized correlation. We then take the pointwise product of each
pair of whitened images and penalize their variations, leading to

Pcorr(u) = wcorr ∑
j

∑
j′> j
‖w f �F

{
W (u j)�W (u j′)

}
‖2 (15)

where wcorr = 3∗10−5, j and j′ loop over all variables, u j is the 2D
image of the jth variable, and W (x) = (x−mean(x))/(

√
var(x)+

10−4) is the whitening transform. Since normal vectors are derived
from height, we set a zero weight for their correlation to avoid
numerical issues.

Illustrative examples Let us illustrate how the above captures
second-order variations. For instance, an image with constant local

average may have low contrast in some regions, and high contrast
in others. Cf. texture A2 in Figure 8c; note that there are no low
frequencies apart from the DC in the magnitude spectrum F{A2},
i.e., the changing local variance (contrast) is not visible there. It
does, however, show up as the low-frequency energy in the spectrum
F{C(A2)

2} of the centered and squared signal (Figure 8d).

Furthermore, even if two variables are both first and second order
stationary, their local correlation may vary across the image. For
example, textures B and B′ in Figure 8e,g both have unchanging
local mean and variance (contrast), but the local correlation between
A and B varies as the dot pitch in B is different from the checker pitch
in A. This manifests itself as low-frequency energy in the spectrum
of the pointwise product W (A)�W (B) (Figure 8f). Contrast this to
Figure 8g: the equal dot and checker pitches in A and B′ mean in the
local correlation is unchanging, and hence the spectrum contains no
low frequencies (Figure 8h).

Higher-order moments By the same reasoning, we also penal-
ize global variations in third and fourth moments of the whitened
parameters (i.e. skewness and kurtosis), by formulas

P3(u) = w3‖w f �F
[
W (u)3

]
‖2, (16)

P4(u) = w4‖w f �F
[
W (u)4

]
‖2 (17)

where w3 = 3∗10−6 and w4 = 3∗10−7. We find that these terms
generally help, although are not as important as the first and second
order priors.

Gradient statistics In addition to applying the priors to SVBRDF
parameter maps, we apply the same priors to their finite difference
gradients. This imposes additional stationarity constraints related
to the spatial size of features: while the scaling of an image does
not change the magnitude of pixel values, it does change the mag-
nitude of gradients. We exclude the height from the gradient prior
because its gradient (normals) has already been taken into account.
Like skewness and kurtosis, we find that applying the prior also to
gradients yields a small but consistent improvement.

4.4 Internal Parameterization (Preconditioning)

This subsection describes our internal reflectance parameterization
designed make the loss function friendly to numerical optimization.
This preconditioning changes the loss function landscape, but not

To appear in ACM Transactions on Graphics (Proc. SIGGRAPH 2016)

leather wine wallpaper 3 plastic cutting

a)

b)

Figure 9: Frequency weights for preconditioning. a) Representative
tiles from input images. b) Average magnitude spectra wg taken over
300 tiles from input images. Together with the prior weights, these
form the per-frequency weights ws used in preconditioning.

the optimal solutions. Our preconditioner consists of two parts. First,
we internally store all SVBRDF components as conjugate symmetric
Fourier spectra; second, after transformation into the spatial domain,
additional non-linearities are applied to yield final glossiness values,
surface normals and specular albedos.

4.4.1 SVBRDF Components

The glossiness parameter α appears as an exponent in Equation 9,
and its perceptual effect is highly non-linear. We optimize it in the
better-suited logarithmic space, and exponentiate before feeding into
the renderer. Furthermore, we limit the glossiness value to ≥ 10
from below in order to prevent it from taking such low values that it
might be confused with the diffuse component.

We parameterize the surface normal field n as a per-pixel height map
h. We convert the height map to a unit normal vector field by first
convolving with finite difference kernels to derive ñ = [∇x ∇y 1]
and then normalizing it to the unit sphere n = ñ/|ñ|. We use the
2×2 kernel 1

2 [−1 1 ; −1 1] (and its transpose for y-direction) to
reduce numerical artifacts related to one-sided derivatives.

We also constrain the specular chromaticity to be constant across
the solution. This is a reasonable assumption for most materials,
and significantly reduces the dimensionality and ambiguity of the
problem. We reduce the specular albedo ρs to a scalar field, and
introduce two global scalar variables, ρs,U and ρs,V that represent
the two YUV chromaticity components. At each pixel, the full RGB
specular albedo is computed as ρ i

sY−1[1 ρs,U ρs,V]
T, where Y is the

RGB-to-YUV conversion matrix.

4.4.2 Spectral Preconditioning

Because our stationarity prior induces strong dependencies between
variables, we find that optimizing the reflectance variables (with the
above remappings applied) does not yield reasonable local minima.
Values for an individual pixel cannot move much by themselves,
because they would soon incur a significant non-stationarity penalty.
Indeed, any given update should either be made to all image regions
simultaneously, if beneficial, or not at all. In other words, the updates
themselves should be stationary.

Transforming the optimization variables into the Fourier domain
helps significantly. In this space, each variable controls the mag-
nitude of a single plane wave in a given parameter image. Above
some frequency, the plane waves are all stationary by our definition,

and thus give rise to descent directions that are in tune with the prior.
To enforce real-valued results, we use only the conjugate symmet-
ric part of the Fourier transform as the raw parameterization. To
strongly discourage non-stationary steps, we weigh down the lowest
frequencies as described below.

To further encourage the optimizer to primarily consider steps that
would produce similar frequency content as present in the input, we
further scale the frequencies with weights derived from the input
photograph. Before starting the optimization, we pick a few hundred
random tiles from the input, whiten them, compute their average
windowed FFT magnitude spectrum, and use it as a per-frequency
weight wg.

The full per-frequency weighting ws is obtained as (1−w f)�wg,
which is normalized to sum to 1, with DC then set to 0.001. Here, w f
is the spectral weighting from the priors. Some examples are shown
in Figure 9. The entire spectral preconditioning transformation is
shown in Figure 6 and given by the formula

u = wpF−1 [ws�U(ũ)] , (18)

where ũ are the raw optimization variables, and u are the transformed
primal variables fed into the renderer (gloss, specular albedo, and
surface normal additionally undergo the transformations described
in 4.4.1). U is the linear transform that converts the conjugate-
symmetric part ũ into an entire complex-valued spectrum so that the
inverse FFT produces a real-valued image. The leading multiplier
wp = 1000n2 balances the weight of the per-point variables against
the global specular chroma variables. n is the tile pixel dimension.

Because the height map does not directly cause frequency content
in the rendering — the normals do — we additionally multiply its
weighting ws by 150(|ω|+3)−1 (biased inverse magnitude of the
frequency). The idea is that the height-to-normals differentiation
(essentially multiplication by ωx and ωy in Fourier domain) approx-
imately cancels this extra weighting, so that the intended effect of
the preconditioning carries over to the normals. We further multiply
the weight of the glossiness variables by 4, as otherwise they tend to
change slowly.

We note a similarity to Barron and Malik [2015] who optimize
weighted Laplacian pyramid coefficients as opposed to direct pixel
values, with dramatically improved results. Refer to Figure 5 for a
comparison of different preconditioners.

4.4.3 Periodicity

We aim for a seamlessly tileable result, both because it is obviously
useful in practice, but also because it prevents artifacts from forming
at the edges. We remove any special significance from the edges
by using periodic boundary conditions in the height-to-normals
convolution and the gradient stationarity priors. The various Fourier
transforms already use periodic boundaries intrinsically.

To eliminate boundary effects from the statistics comparisons, we
remove the zero-padding from the convolutions in VGG evaluation,
instead letting it shrink the activation maps on each convolution. This
leads to spatially uneven results, as the statistics of the shrunken
activation maps contribute little to the outer edges of the tile. We
eliminate this effect by randomly circularly shifting the parameter
maps before feeding them to the renderer, by a per-tile amount that
stays constant throughout the optimization. The effect is that the
contributions from the statistics will evenly land to multiple locations
within the periodic tile, instead of the center only.

To appear in ACM Transactions on Graphics (Proc. SIGGRAPH 2016)

Diffuse Specular Glossiness Normals Our rendering Input
bo

ok
bl

ac
k

bo
ok

br
ow

n
le

at
he

r
am

be
r

pa
in

t
bl

ac
k

ta
pe

si
lv

er
2

w
al

lp
ap

er
3

Figure 10: Diffuse, specular, glossiness and normal maps, and comparison of re-renderings and input for select datasets (cropped vertically).

5 Results and Discussion

5.1 Implementation and Input Data

We have implemented our algorithm in Matlab using the MatCon-
vNet package [Vedaldi and Lenc 2014]. Our solver takes approx. 2
hours per dataset on a single NVIDIA Quadro K6000 GPU using
1200 L-BFGS iterations with 15 tiles, 256x256 pixels each.

We evaluate our method on the freely-available 72-material iPhone
5 flash-no-flash dataset1 from Aittala et al. [2015]. We scale the
input flash images to 1632x1224, and ignore the no-flash guide
images. The inputs are JPEG files that have undergone an unknown
processing pipeline that includes e.g. color processing, gamma,
and noise reduction. We do not attempt a radiometric calibration
except for approximate inverse gamma. The set includes categories
such as metal, wood, plastic, papers, fabrics, and leathers. Some of
the inputs feature defects such as the edge of the material sample.
We preprocess these by manually introducing a crop rectangle. All
solution data, along with the input images, is presented for inspection
in the supplemental material.

5.2 Synthesis Results

As our objective function only attempts to match the input in a statis-
tical sense, it is much more ambiguous than the explicit constraints
used in most reflectance capture techniques. This ambiguity leads

1http://tinyurl.com/TwoShotSVBRDF/inputs and solutions

one to presume the synthesis results may not reach the same quality.
Bearing this in mind, we nevertheless find that the results generally
convey the feel of the materials well both in terms of overall appear-
ance and individual structured features. Figure 10 shows a subset
of the synthesized SVBRDF maps, along with side-by-side compar-
isons to the input. To directly visualize how the main objective of the
optimization is fulfilled, Figure 11 shows several input photographs,
each with 15 rendered SVBRDF tiles overlaid, that feature solutions
of varying degrees of success. Most often, the rendered tiles blend
in with the background quite well. As expected, the stationarity
assumption means large-scale features in the input photographs are
missing from the results. However, the solver appears mostly ro-
bust to input non-stationarity. The supplemental material contains
videos featuring novel-view relightings of all inputs, demonstrating
generalization.

Interestingly, we note that also many materials that strongly violate
our model assumptions (non-planarity, anisotropy, etc., e.g. fab-
ric orange, fabric zigzag, seed) generally blend in with the input
photographs. However, these results often fail to faithfully general-
ize to novel views, as can be seen in the accompanying relighting
videos. Some results feature strong intensity differences towards the
edges. We attribute this to our imprecise model of the flash falloff.

5.3 Discussion

Effect of neural statistics To study the importance of the neural
texture descriptor on the results, we implemented a version of our al-

To appear in ACM Transactions on Graphics (Proc. SIGGRAPH 2016)

http://tinyurl.com/TwoShotSVBRDF/inputs_and_solutions

plastic blue book brown book leather red

book wine fabric orange∗ fabric zigzag∗

leather brown leather wine metal gritty

metal scratches paint white seed∗

tissue wood board wood dark

Figure 11: A selection of results. Each of the input images have 15 relit synthesized tiles embedded in them. The tiles are marked in the top-left
image, and are roughly in the same places in the other images. Inputs marked with * strongly violate our input assumptions by significant
anisotropy or non-planarity. All remaining results are included in the supplemental material.

To appear in ACM Transactions on Graphics (Proc. SIGGRAPH 2016)

a) Diffuse Specular Glossiness Normals Result
O

nl
y

F
P

O
nl

y
T G

b) cardboard fabric blue

TG TG+FP TG TG+FP

Figure 12: a) Comparison of TG and the Fourier power spectrum
texture descriptor (FP). FP works reasonably well for stochas-
tic textures, but falls apart with more structured inputs, such as
leather amber. b) A result computed using both texture descriptors
simultaneously. Interestingly, in some cases FP helps to recover
larger structures, such as the vertical streaks in cardboard. In fab-
ric blue, the combined descriptor helps the optimizer overcome its
confusion resulting from the significant anisotropy. The result is still
overall unfaithful as this is not part of our reflectance model.

gorithm that uses the absolute difference in Fourier power spectrum
abs(|F{W �R(u;ek,Ik)}|2−|F{W �yk}|2) as the texture descrip-
tor instead of TG(·). W is the Hann windowing function. This is
essentially a random phase noise descriptor. Figure 12a compares re-
sults to ours in a representative set. Interestingly, the result manages
to capture overall shininess and color, and looks plausible viewed
from far away. However, it breaks down into Perlin noise -like pat-
terns on closer inspection, as the descriptor fails to capture the local
shapes of the textural features. This is to be expected, given the
rather narrow range of textures represented well by Fourier modulus.

Failure cases Figure 13 describes representative failures due to
model assumption violations and bad conditioning. Please refer to
the caption for analysis. A particularly interesting issue is strong
repetitive structure, such as a brick wall or the wallpaper in Fig-
ure 13a). This continues to be challenging for parametric texture
synthesis, including the CNN-based approach we build on. This
carries over to our results. By seeding synthesis with initial guesses
that feature slight regular structure on top of white noise, we have
noticed that the loss function is able to distinguish between a regular
and irregular solution, but with the purely stochastic initial guesses
the L-BFGS optimizer gets stuck in a local minimum, unable to
move to the basin of convergence of the regular structure.

Interestingly, we observe that mixing the absolute Fourier power
spectrum difference descriptor in with TG in the loss function may
help our solver reach more regular solutions (Figure 12b). The
effect is not general, but the result indicates that further research into
suitable statistics is warranted.

We also tested the method on a dataset that clearly violates our
stationarity assumption. Figure 13e) shows a material with distinct
regions of metal, wood, and shiny paint. As expected, the method
cannot find a solution tile that reconstructs each of these materials
simultaneously, and instead produces a noisy solution that roughly
reproduces the average colors and the apparent highlight size.

Normal maps comparison Figure 14 compares some of our nor-
mal maps to the results of Aittala et al. [2015] and their submicron-
accurate GelSight ground truth scans. As is to be expected, our
results are not as accurate, but often convey the structure reasonably
well. In hard cases, the ambiguity posed by lack of point correspon-
dences may lead to a clearly inferior result (plastic cutting).

Synthetic data comparison We tested our method on a set of
rendered synthetic input images with known ground truth. To obtain
plausible SVBRDF data, we adapted the solved maps from Aittala
et al. [2015] to our rendering model. Figure 15 shows the synthetic
flash photo, the corresponding ground truth, and our solution for
three materials of varying color, bumpiness, and specularity. Vi-
sual and statistical comparison of the maps demonstrates that our
method generally recovers a good approximation of the ground
truth. The most notable deviation can be seen in the albedo channels
of leather brown dataset, where the specular lobe is wider than the
camera FOV, and hence not uniquely separable from the diffuse com-
ponent under our assumptions. To evaluate the visual significance of
the deviations, we also render our solutions from a novel view and
light angle, and compare the result to a corresponding ground truth
rendering. While somewhat more irregular, our solutions reproduce
the appearance well.

6 Conclusion

We have described a method for capturing a rich appearance model
of a textured surface based on a single input image. Inspired by
parametric texture synthesis, we introduced a novel way to drive the
model fit by statistical image comparison without explicit matches
between model predictions and the input. Plausible results are ob-
tained for a range of different materials.

Acknowledgements

We thank Samuli Laine, Tero Karras, and Frédo Durand for fruitful
discussions. This work was supported by the Academy of Finland
(grant 277833). We acknowledge the computational resources pro-
vided by the Aalto Science-IT project.

A Implementation

We implement our algorithm in Matlab using the MatConvNet pack-
age [Vedaldi and Lenc 2014], which evaluates directed acyclic
graphs (DAGs) of layers and computes the gradients using the chain
rule with backpropagation. It automatically maps onto a GPU. The
texture descriptors TG can readily be computed and differentiated
using this machinery [Gatys et al. 2015b], and we formulate the rest
of our approach, i.e., preconditioning, rendering, and priors as a
sequence of layers in the same DAG. The full design is shown in
Figure 6. This approach requires us to implement a differentiation
operation for the new layer types, such as FFT, but it also allows us
to differentiate very complicated compositions of functions.

The objective function is evaluated by feeding the optimization
variables and per-tile constants into the network entry nodes, run-
ning the network, and summing the outputs of the texture statistics
comparison layers and the priors. Conversely, the derivatives are
evaluated by tagging these output nodes with a derivative value of 1,
and backpropagating the derivatives through the network in a stan-
dard manner. This is repeated for each tile k, each time substituting
in the lighting conditions Ik and target texture descriptors TG(yk),
and accumulating the results. The priors are processed separately
in a similar manner. The target texture descriptors are computed

To appear in ACM Transactions on Graphics (Proc. SIGGRAPH 2016)

a) b) c) d) e)
Figure 13: Failure cases. a) Materials with highly regular structure may fail to recover the precise arrangement, and the solution is left
with several incompatible smaller regions that fade into each other. Individual features may still be captured well in parts of the resuls. b)
Anisotropy and gross violations of planarity may lead to results blending in with the input rather well, but the synthesized surface shape and
reflectance are not faithful. Here, the anisotropic bumps are explained by curved smooth ridges that have little to do with the real shape. c)
Here the solver attempts to explain an almost pure albedo variation with normal changes. In this case, manually setting a penalty for normals
fixes the issue. d) Strongly anisotropic materials, such as the cloth, do not produce faithful synthesis results as they fall outside the scope of our
model. e) Mixtures of materials – in this case metal, wood, and shiny paint – violate our stationarity assumption and lead to dubious results.

wallpaper 3 book black book bluegray plastic cutting

A
itt

al
a

et
al

.[
20

15
]

G
ro

un
d

tr
ut

h
O

ur

Figure 14: Comparison between ground truth GelSight scans, the
results of Aittala et al. [2015], and our result. In the first three sets
we observe a generally good resemblance, but in plastic cutting the
estimation has failed and most of the structure is missing.

and stored in a pre-pass by feeding the tiles into the same DAG
(bypassing the rendering step), and reading back their statistics.

In optimization, we initialize the raw optimization variables ũ so
that after preconditioning their values are n = [0 0 1], α = exp(3),
ρs = [0.5 0.5 0.5], and ρd computed as the average color of the outer
edges of the input image, where the effect of the specular highlight is
the weakest. We also add a tiny amount of noise (standard deviation
0.01) to each variable. We approximate the flash emission by the
empirical function exp(−0.5 ∗ tan(tan(γ) ∗ 1.6)2), where γ is the
angle from the camera central axis.

References

AITTALA, M., WEYRICH, T., AND LEHTINEN, J. 2015. Two-shot
SVBRDF capture for stationary materials. ACM Trans. Graph.
34, 4, 110:1–110:13.

BARRON, J., AND MALIK, J. 2015. Shape, illumination, and
reflectance from shading. IEEE TPAMI (to appear).

BOIVIN, S., AND GAGALOWICZ, A. 2001. Image-based rendering
of diffuse, specular and glossy surfaces from a single image. In
Proc. ACM SIGGRAPH, 107–116.

CLARK, R., 2010. Crazybump. http://www.crazybump.com, Last
access: 16 Jan 2016.

DEBEVEC, P., HAWKINS, T., TCHOU, C., DUIKER, H.-P.,
SAROKIN, W., AND SAGAR, M. 2000. Acquiring the reflectance
field of a human face. In Proc. ACM SIGGRAPH, 145–156.

DONG, Y., WANG, J., TONG, X., SNYDER, J., LAN, Y., BEN-
EZRA, M., AND GUO, B. 2010. Manifold bootstrapping for
SVBRDF capture. ACM Trans. Graph. 29, 4, 98:1–98:10.

DONG, Y., TONG, X., PELLACINI, F., AND GUO, B. 2011. App-
gen: interactive material modeling from a single image. ACM
Trans. Graph. 30, 6, 146:1–146:10.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting
for texture synthesis and transfer. In Proc. ACM SIGGRAPH,
341–346.

EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis by
non-parametric sampling. In Proc. International Conference on
Computer Vision (ICCV ’99), vol. 2, 1033–1038.

GALERNE, B., GOUSSEAU, Y., AND MOREL, J.-M. 2010. Random
phase textures: Theory and synthesis. IEEE Transactions in
Image Processing 20, 1, 257–267.

GATYS, L. A., ECKER, A. S., AND BETHGE, M. 2015. A neural
algorithm of artistic style. CoRR abs/1508.06576.

GATYS, L. A., ECKER, A. S., AND BETHGE, M. 2015. Texture
synthesis using convolutional neural networks. In Advances in
Neural Information Processing Systems 28.

GRAHAM, P., TUNWATTANAPONG, B., BUSCH, J., YU, X.,
JONES, A., DEBEVEC, P., AND GHOSH, A. 2013. Measurement-
Based Synthesis of Facial Microgeometry. Computer Graphics
Forum 32, 2pt3, 335–344.

HEEGER, D. J., AND BERGEN, J. R. 1995. Pyramid-based texture
analysis/synthesis. In Proc. ACM SIGGRAPH, 229–238.

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B.,
AND SALESIN, D. H. 2001. Image analogies. In Proc. ACM
SIGGRAPH, 327–340.

HUANG, L., YANG, Y., DENG, Y., AND YU, Y. 2015. Densebox:
Unifying landmark localization with end to end object detection.
CoRR abs/1509.04874.

KASPAR, A., NEUBERT, B., LISCHINSKI, D., PAULY, M., AND
KOPF, J. 2015. Self Tuning Texture Optimization. Computer
Graphics Forum 34, 2.

To appear in ACM Transactions on Graphics (Proc. SIGGRAPH 2016)

http://www.crazybump.com

Input Maps Novel view, our result Novel view, ground truth

G
T

µ=0.075 σ=0.027 µ=0.87 σ=0.26 µ=4.7 σ=0.33 σ=0.075

O
ur

µ=0.075 σ=0.028 µ=0.83 σ=0.20 µ=4.0 σ=0.23 σ=0.063

G
T

µ=0.11 σ=0.023 µ=0.42 σ=0.16 µ=2.8 σ=0.38 σ=0.095

O
ur

µ=0.14 σ=0.054 µ=0.41 σ=0.18 µ=2.8 σ=0.39 σ=0.073

G
T

µ=0.069 σ=0.012 µ=0.66 σ=0.17 µ=3.6 σ=0.16 σ=0.028

O
ur

µ=0.069 σ=0.013 µ=0.66 σ=0.18 µ=3.5 σ=0.22 σ=0.018

Figure 15: Results for three synthetic datasets. The leftmost column shows the input flash image, which was rendered using the ground truth
SVBRDF shown in the middle column. Our solution from this input is also shown in the center column along with mean and standard deviation
of the maps. The statistics of the glossiness values are computed from logarithms of the Blinn exponents. The rightmost columns show a
comparison of novel-view renderings of the ground truth and our solution.

KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, N. 2005.
Texture optimization for example-based synthesis. ACM Trans.
Graph. 24, 3, 795–802.

LECUN, Y., BOTTOU, L., BENGIO, Y., AND HAFFNER, P. 1998.
Gradient-based learning applied to document recognition. In
Proc. IEEE, 2278–2324.

LENSCH, H. P. A., KAUTZ, J., GOESELE, M., HEIDRICH, W.,
AND SEIDEL, H.-P. 2003. Image-based reconstruction of spatial
appearance and geometric detail. ACM Trans. Graph. 22, 2,
234–257.

NGAN, A., DURAND, F., AND MATUSIK, W. 2005. Experimental
analysis of BRDF models. In Proc. Eurographics Symposium on
Rendering, 117–226.

PORTILLA, J., AND SIMONCELLI, E. P. 2000. A parametric texture
model based on joint statistics of complex wavelet coefficients.
Int. J. Comput. Vision 40, 1, 49–70.

RABIN, J., PEYRÉ, G., DELON, J., AND BERNOT, M. 2011.
Wasserstein barycenter and its application to texture mixing. In
Proc. Scale Space and Variational Methods in Computer Vision
(SSVM), vol. 6667, 435–446.

RAZAVIAN, A. S., AZIZPOUR, H., SULLIVAN, J., AND CARLS-
SON, S. 2014. CNN features off-the-shelf: An astounding
baseline for recognition. In Proc. CVPR.

SIMONYAN, K., AND ZISSERMAN, A. 2014. Very deep con-
volutional networks for large-scale image recognition. CoRR
abs/1409.1556.

SUPER, B., AND BOVIK, A. 1995. Shape from texture using local
spectral moments. IEEE TPAMI 17, 4.

SZEGEDY, C., LIU, W., JIA, Y., SERMANET, P., REED, S.,
ANGUELOV, D., ERHAN, D., VANHOUCKE, V., AND RA-

BINOVICH, A. 2015. Going deeper with convolutions. In
Proc. CVPR.

TONG, X., ZHANG, J., LIU, L., WANG, X., GUO, B., AND SHUM,
H.-Y. 2002. Synthesis of bidirectional texture functions on
arbitrary surfaces. ACM Trans. Graph. 21, 3, 665–672.

VEDALDI, A., AND LENC, K. 2014. MatConvNet - convolutional
neural networks for MATLAB. CoRR abs/1412.4564.

WANG, J., ZHAO, S., TONG, X., SNYDER, J., AND GUO, B. 2008.
Modeling anisotropic surface reflectance with example-based
microfacet synthesis. ACM Trans. Graph. 27, 3, 41:1–41:9.

WANG, C.-P., SNAVELY, N., AND MARSCHNER, S. 2011. Esti-
mating dual-scale properties of glossy surfaces from step-edge
lighting. ACM Trans. Graph. 30, 6, 172:1–172:12.

WEI, L.-Y., HAN, J., ZHOU, K., BAO, H., GUO, B., AND SHUM,
H.-Y. 2008. Inverse texture synthesis. ACM Trans. Graph. 27, 3,
52:1–52:9.

WEYRICH, T., MATUSIK, W., PFISTER, H., BICKEL, B., DON-
NER, C., TU, C., MCANDLESS, J., LEE, J., NGAN, A., JENSEN,
H. W., AND GROSS, M. 2006. Analysis of human faces using a
measurement-based skin reflectance model. ACM Trans. Graph.
25, 3, 1013–1024.

WEYRICH, T., LAWRENCE, J., LENSCH, H., RUSINKIEWICZ, S.,
AND ZICKLER, T. 2009. Principles of appearance acquisition and
representation. Foundations and Trends in Computer Graphics
and Vision 4, 2, 75–191.

ZICKLER, T., RAMAMOORTHI, R., ENRIQUE, S., AND BEL-
HUMEUR, P. N. 2006. Reflectance sharing: predicting appearance
from a sparse set of images of a known shape. IEEE TPAMI 28,
8, 1287–1302.

To appear in ACM Transactions on Graphics (Proc. SIGGRAPH 2016)

