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Abstract

This document supplements the SIGGRAPH 2015 technical paper
“Gradient-domain Path Tracing”. We provide additional details and
steps in the derivation of a frequency analysis of gradient sampling
and reconstruction for Monte Carlo integration, including a numer-
ical experiment that we performed to validate the theory, under its
simplifications. We also present full derivations of the Jacobian de-
terminants for our the shift mapping.

1 Frequency Analysis Derivations

Here we provide some additional detail and derivation steps for the
frequency analysis of gradient-domain Monte Carlo rendering pre-
sented in the paper. We follow the same outline as in the paper.

1.1 Frequency Analysis of Gradient Estimation

We start by expressing the path difference function as a 1D convo-
lution. For our analysis we use the simple shift mapping Tij(x̄) =
(x+ j − i, p̄) that moves the path from pixel i to j without chang-
ing the other path parameters. We only compute differences be-
tween neighboring pixels in 1D, so we only have one mapping
T (x̄) = (x−1, p̄). Clearly, the Jacobian of this mapping is identity
and it has a unit determinant. The difference between pixel i and
the one next to it is given by integrating the path difference function
g(x, p̄) = f(x, p̄)− f(x− 1, p̄),

∆i(xi) =

(
h(x) ∗

∫
Ω

f(x, p̄)− f(x− 1, p̄)dµ(p̄)dx
)

(xi),

where Ω denotes the space of non-image path coordinates. Using
a path space difference operator d(x̄) = δ(x) − δ(x − 1), where
δ(x) is the Dirac delta distribution, we write this as a convolution

f(x, p̄)− f(x− 1, p̄) = (d ∗ f)(x, p̄) = g(x, p̄). (1)

In addition, instead of evaluating gradients only at discrete pixels i,
we can write a continuous gradient function ∆(x) as

∆(x) =

(
h ∗
∫

Ωp̄

g(x, p̄) dµ(p̄)

)
(x). (2)

We now turn to spectral analysis. Denote the Fourier transform
F{f} of the image contribution function by F (ωx, ωp̄), where ωx
are frequencies (ordinary, not angular) along the image axis, and
ωp̄ is a vector of frequencies along the remaining path coordinates.

Similarly, D(ωx, ωp̄) is the Fourier transform of the difference op-
erator d,

D(ωx, ωp̄) = 1− ei2πωx ,

and |D|2 is its power spectrum, that is, the square magnitude of the
Fourier transform,

|D(ωx, ωp̄)|2 = 2− 2 cos(2πωx).

According to the standard convolution-multiplication relationship,
the frequency representation of g = d ∗ f (Equation 1) is

G(ωx, ωp̄) = DF = (1− ei2πωx)F (ωx, ωp̄), (3)

and its power spectrum is

|G(ωx, ωp̄)|2 = |DF |2 = (2− 2 cos(2πωx))|F (ωx, ωp̄)|2.

showing that the difference operator scales down amplitudes of low
frequencies, and it multiplies the square amplitudes of waves at the
Nyquist frequency ωx = 1/2 of the pixel grid (unit spacing be-
tween pixels) by a factor of four.

Sampling Gradients and Pixels Since we are sampling stochas-
tically we are interested in the expected values of sampled signals,
as opposed to the result of sampling with one concrete instance of
the stochastic process. Our analysis of stochastic sampling follows
the work of Dippé and Wold [1985], who state the assumption that
both the sampling process and the image contribution function are
wide-sense stationary (WSS) processes. We show below, however,
that it is only necessary to make this assumption for the sampling
process, and not for the image contribution function. Wide-sense
stationarity means that the first moment and the autocovariance of
the process are constant over space, and this assumption simplifies
the analysis considerably. Finally, we restrict our analysis to uni-
form random sampling, although the analysis can be extended to
other stochastic sampling techniques [Dippé and Wold 1985].

As a key consequence, assuming stationarity of stochastic sam-
pling implies that our sampling process extends over an infinite
domain, and we cannot model the restriction of sampling to a fi-
nite region. Note that the means of our integrands E[f(X)], where
X is a random sample over an infinite domain, will be zero, and
we will always overestimate sample variance compared to practical
approaches. Considering the sample variance defined as

Var[f(X)] = E[f(X)2]− E[f(X)]2 < E[f(X)]2, (4)

we see that ifX is drawn from a finite sampling domain, the square
of the mean E[f(X)]2 is strictly positive. In contrast, the variance
estimate under our assumptions is E[f(X)2], which we also call
the energy of f .

The frequency domain representation of a wide-sense stationary
stochastic signal is given by its power spectral density (PSD), which
is defined as the Fourier transform of its autocorrelation func-
tion [Miller and Childers 2012]. Intuitively, this can be understood
as the expected power spectrum of the stochastic process. We de-
note a (multi-dimensional) stationary, uniform random sample pro-
cess s, and assume the sampling density is n samples per unit area.



Modeling uniform random sampling as a Poisson process, Lene-
man [?] derives the PSD |S(ωx, ωp̄)|2 of s as

|S(ωx, ωp̄)|2 = n+ n2δ(ωx, ωp̄), (5)

that is, a constant n plus a scaled impulse at the origin. We now
sample both the image contribution function and the path difference
function with s. We start by analyzing the sampled image contri-
bution function. In the frequency domain, sampling is the convolu-
tion of the Fourier transform of the sampling grid with the Fourier
transform of the signal. Since we are sampling stochastically, we
are interested in the expected square magnitude of the Fourier trans-
form of the sampled signal, which is E[|F ∗ S|2] where ∗ denotes
convolution.

The crucial consequence of assuming a wide sense-stationary sam-
pling process is that we can express E[|F ∗ S|2] as the convolution
|F |2 ∗ |S|2 [Dippé and Wold 1985]. This can be derived in a few
simple steps. We first reformulate to change the order of taking the
expected value and the Fourier transform, which we can do because
both are linear operators,

E[|F ∗ S|2] = E [F{sf} · F{sf}∗]
= E[F{(sf) ? (sf)}]
= F {E[(sf) ? (sf)]} ,

where F{·}∗ is the complex conjugate of the Fourier transform, ?
denotes correlation, and we used the convolution theorem multiple
times. Now let us denote paths by vectors x̄ = (x, p̄) and τ and
explicitly write the auto-correlation as

E[(sf) ? (sf)] = E

[∫
s(x̄)s(x̄+ τ)f(x̄)f(x̄+ τ)dx̄

]
=

∫
E[s(x̄)s(x̄+ τ)]f(x̄)f(x̄+ τ)dx̄

= Rss(τ)

∫
f(x̄)f(x̄+ τ)dx̄

= Rss(τ)(f ? f)(τ),

where the first step is the definition of correlation. The second step
exploits linearity of integration and expectation, and the fact that
terms involving f are deterministic values that can be pulled out
of the expectation. The crucial step is the third step, where we ex-
ploit the key property that the auto-correlation function Rss of the
wide-sense stationary sampling process depends only on the off-
set τ and can be pulled out of the integral over x̄, and finally we
also abbreviate the auto-correlation of f using the symbol ?. Now
we plug this back into the Fourier transform and again leverage the
convolution theorem. Here we use the key fact that, by definition,
the Fourier transform of the auto-correlation function of the WSS
process yields its power spectral density, that is F{Rss} = |S|2,

E[|F ∗ S|2] = F{Rss · (f ? f)}
= |S|2 ∗ F{f ? f}
= |S|2 ∗ |F |2.

Using the PSD for the Poisson process from Equation Equation 5
we now obtain(

|F |2 ∗ |S|2
)

(ωx, ωp̄)

= n2|F |2(ωx, ωp̄) + n

∫
|F |2(ωx

′, ωp̄
′)dωx′dωp̄′

= n2|F |2(ωx, ωp̄) + n‖F‖2.

Observe that this is the power spectrum of the sampled signal in
the combined (x, p̄) path space, before integration. It consists of a
scaled version of the power spectrum of the original signal, plus an
error term proportional to the total energy ‖F‖2 of the signal. This
is analogous to the analysis by Dippé and Wold [1985], with the
difference that they investigated sampling in the image plane only,
whereas we sample in the higher dimensional space. In contrast
to their assumption about f being wide-sense stationary, we also
showed here that this is not necessary.

Integration over Paths and Pixel Filter Integration over p̄ cor-
responds to slicing at ωp̄ = 0 (a vector of all zeros) in the fre-
quency domain. In addition, to normalize the integral we need to
divide each sample by one over the sample density, that is 1/n. This
means the PSD of the sampling grid is divided by 1/n2. Finally, to
reconstruct the output image we convolve with the pixel filter h(x)
in the spatial domain, which is a multiplication with the Fourier
transform H(ωx) in the frequency domain. Hence the power spec-
trum of the image obtained using Monte Carlo integration is

1

n2

(
|F |2 ∗ |S|2

)
(ωx, 0)|H(ωx)|2

= |F (ωx, 0)|2|H(ωx)|2 +
1

n
‖F‖2|H(ωx)|2.

The first term here is the power spectrum of the ground truth image.
This reveals the mean squared error (MSE) |εF (ωx)|2 (slight abuse
of notation, expected value is implied) of sampling, integration, and
pixel filtering as the second term

|εF (ωx)|2 =
1

n
‖F‖2|H(ωx)|2, (6)

which is a function of spatial frequency ωx, and equivalent to the
variance of the whole process. Assuming an ideal pixel filter, the
MSE is simply a constant ‖F‖2/n for frequencies |ωx| < 1/2
below the Nyquist limit of the output pixel grid. That is, the MSE is
white noise with square magnitude proportional to the signal energy
‖F‖2.

Analysis of Gradients The power spectrum of the path differ-
ence function (Equation 3) |G(ωx, ωp̄)|2 is

|G(ωx, ωp̄)|2 = (2− 2 cos(2πωx))|F (ωx, ωp̄)|2,

and we denote its total energy analogous to above as

‖G‖2 =

∫
(2− 2 cos(2πωx

′))|F (ωx
′, ωp̄

′)|2dωx′dωp̄′. (7)

Finally, the MSE of the Monte Carlo estimate of the gradients
|εG(ωx)|2 is similar as above,

|εG(ωx)|2 =
1

n
‖G‖2|H(ωx)|2. (8)

This leads to a first simple insight, which is that the ratio of the
MSEs of conventional versus gradient sampling is simply the ratio
of the total energies,

|εG(ωx)|2

|εF (ωx)|2 =
‖G‖2

‖F‖2 , (9)

for |ωx| < 1/2. This ratio is typically significantly smaller than
one, because the factor (2 − 2 cos(2πωx

′)) in Equation 7 strongly
attenuates low frequency energy.



1.2 Poisson Reconstruction

We next analyze the reconstruction of a final image based on sam-
pled gradients and a “coarse” image sampled conventionally. As
Lehtinen et al. [2013] mention, this Poisson reconstruction prob-
lem can be expressed in the frequency domain. Here, we extend
their analysis by explicitly deriving the MSE of the Poisson recon-
struction using the MSEs of the sampled image and its gradients
derived above.

Let us express the result of sampling, integration, and pixel filtering
as the ground truth image plus an error εF (ωx),

(F ∗ S)(ωx, 0)H(ωx) = F (ωx, 0)H(ωx) + εF (ωx),

and similarly for the gradients with an error εG(ωx),

(DF ∗ S)(ωx, 0)H(ωx) = D(ωx, 0)F (ωx, 0)H(ωx) + εG(ωx).

In the following, all frequency domain functions are interpreted as
their restriction to the slice ωp̄ = 0. Hence F denotes the Fourier
transform of the ground truth image, andDF the Fourier transform
of the ground truth image gradients. Poisson reconstruction Rα
from the sampled data is then [Lehtinen et al. 2013]

Rα =
α2(FH + εF ) +D∗(DFH + εG)

α2 + |D|2

= FH +
α2εF +D∗εG
α2 + |D|2

= FH + εRα , (10)

where we omitted the frequency parameter ωx for simplicity, and
we introduced the term εRα to denote the error of the reconstruc-
tion. The variance (that is, the MSE) of the reconstruction (at a
given frequency ωx, omitted again) is

|εRα |
2 = Var[εRα ] = Var

[
α2εF +D∗εG
α2 + |D|2

]
=
α4|εF |2 + |D|2|εG|2

(α2 + |D|2)2
, (11)

where we assumed the errors εF and εG are uncorrelated and their
expected values are zero, and the notation |εF |2 and |εG|2 repre-
sents their variance. In our scenario, the variance of the image |εF |2
and its gradients |εG|2 are now given by Equation 6 and Equation 8.

Minimizing the MSE |εRα |2 over α2 yields the optimal value α2
∗,

which is

α2
∗(ωx) =

|εG(ωx)|2

|εF (ωx)|2 =
‖G‖2

‖F‖2 . (12)

We include the frequency parameter ωx to emphasize that in gen-
eral the optimal α2

∗(ωx) depends on the frequency, but in our sce-
nario this happens to be a constant. Using the optimal α2

∗, the MSE
reduces to

|εRα∗ |
2 =

|εG|2|εF |2

|εF |2|D|2 + |εG|2
. (13)

With our definition of the variances |εF |2 and |εG|2 from Equa-
tion 6 and Equation 8 we write this as

|εF (ωx)|2

|εRα∗ (ωx)|2 =
‖G‖2/‖F‖2 + 2− 2 cos(2πωx)

‖G‖2/‖F‖2 , (14)

for |ωx| < 1/2. This expresses the factor, at each frequency, by
which gradient sampling and reconstruction reduces the MSE com-
pared to conventional sampling.
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Figure 1: Error reduction of gradient sampling and reconstruc-
tion for 2D images: We plot the factor by which gradient sampling
and reconstruction reduces the total MSE compared to conventional
sampling and integration at equal sample count. We show different
energy ratios ‖G‖2/‖F‖2 ∈ {0.05, 0.1, . . . 0.5}, corresponding to
the curves from top to bottom (purple to red). Note that each curve
achieves its maximum at α2 = ‖G‖2/‖F‖2.

Poisson Reconstruction for 2D Images It is straightforward to
generalize the error analysis of Poisson reconstruction to 2D im-
ages, where we have two distinct gradient operators along the hori-
zontal and vertical image axes. Similar to Equation 11, for the MSE
of the reconstruction we obtain

|εRα |
2 =

α4|εF |2 + |Dx|2|εxG|2 + |Dy|2|εyG|
2

(α2 + |Dx|2 + |Dy|2)2
, (15)

where |Dx|2 and |Dy|2 are the power spectra of the horizontal and
vertical gradient operators, and |εxG|2 and |εyG|

2 are the MSEs of the
sampled horizontal and vertical gradients. Let us assume that the
total energy in both gradients is the same, that is ‖Gx‖2 = ‖Gy‖2
and both are defined analogous to Equation 7. We denote this again
‖G‖2. Then we still have α2

∗ = ‖G‖2/‖F‖2 as before.

Finally, let us analyze the total (as opposed to per frequency) MSE
of the reconstructed image by integrating the reconstruction error
in Equation 15 over all frequencies |ωx0|, |ωx1| < 1/2 below the
Nyquist limit of the output pixel grid. For this purpose, we slightly
rewrite the equation as

|εF |2

|εRα |2
=

(α2 + |Dx|2 + |Dy|2)2

α4 + (|Dx|2 + |Dy|2)‖G‖2/‖F‖2 , (16)

where we exploited that |εxG|2/|εF |2 = |εyG|
2/|εF |2 =

‖G‖2/‖F‖2 (Equation 9). Assuming an ideal pixel filter the MSE
of conventional sampling |εF |2 is a constant for |ωx|, |ωy| < 1/2
(Equation 6). Hence the integral of the term on the right yields
the factor by which gradient sampling and reconstruction reduces
the total MSE of conventional sampling. In Figure 1 we plot this
factor for various ratios ‖G‖2/‖F‖2 ∈ {0.05, 0.1, . . . 0.5} over
values α ∈ (0, 1). The plots show an equal sample count compari-
son, meaning that we devide the integral of the term above by three
to account for the fact that gradient-domain rendering in 2D uses
N conventional samples and N samples for horizontal and vertical
gradients each.

Bottom Line In summary, we conclude that under our simplifica-
tions we can quantify the MSE reduction of gradient sampling and
reconstruction based on the ratio of the total energy in the path dif-
ference versus the image contribution function, ‖G‖2/‖F‖2. Since
the gradient operator attenuates low frequencies, and the signal



power is typically dominated by low frequencies, this ratio tends
to be small. This is the fundamental reason behind the effective-
ness of gradient-domain rendering.

1.3 Empirical Validation

In this section we provide an empirical validation of the theory
presented so far in a 2D scenario. Here, “paths” are given as
x̄ = (x, p), where x is the 1D image coordinate, and p is an ad-
ditional 1D integration domain. The image contribution function
f(x, p) is a 2D function that we specify explicitly. Hence we can
easily compute its total energy ‖F‖2, and the energy of its gradi-
ents ‖G‖2, which is all we need to predict the optimal value α2

∗
(Equation 12), the error of the Poisson reconstruction at each fre-
quency (Equation 14), and the reduction of the total MSE compared
to conventional sampling as a function of α2.

In Figure 2 we show an example image contribution function that
approximates ambient occlusion on a planar receiver parallel to the
image plane. Each black line represents an occluder at a certain dis-
tance to the receiver, where occluders at infinity are horizontal lines,
and occluders close to the receiver are nearly vertical lines. In this
particular scenario, ‖F‖2 = 3.4×102 and ‖G‖2 = 0.5×102. We
uniformly distribute samples over a large 2D region to approximate
a WSS sampling process over an infinite domain. In the middle
we plot the predicted MSE |εF (ωx)|2 (Equation 6) of conventional
Monte Carlo integration and the predicted error from gradient sam-
pling and reconstruction |εRα∗ (ωx)|2 (Equation 14) in black. The
frequency range we plot is restricted to the Nyquist limit |ωx| < 0.5
of the output pixel grid. We also plot the corresponding empirically
measured MSEs (blue and red) over 1000 runs of the experiment.
At the bottom we plot the reduction of the total MSE compared to
conventional sampling as a function of α2, both from our empir-
ical data (red) and the prediction by the theory (black). The the-
oretical prediction was obtained by integrating the 1D version of
Equation 16. We observe that the theoretical predictions match the
empirical data very well, where the mismatch can be explained by
the variance in the empirical statistics that we gathered.

We evaluate the benefits and limitations of gradient sampling and
reconstruction in a more realistic scenario in Figure 3. Here we
render direct illumination from a planar, square area light source
onto a planar receiver. Between we place an occluder plane with
an infinite grid of circular holes, with a fixed ratio 1/4 of hole size
over hole spacing. Light, occluder, and receiver planes are all paral-
lel. We sample points on the light source randomly with a uniform
distribution. By scaling the grid of holes we generate occluders of
various complexity. We present results of three different occluders
of increasing complexity from top to bottom.

The left column in Figure 3 shows the result of conventional ren-
dering with 64 samples per pixel (spp). The next column contains
the result of gradient sampling and reconstruction at 64 spp for the
coarse image, and additionally 64 spp for horizontal and vertical
gradients. Here we reuse the samples to compute the coarse image
and the base paths of the gradients. That is we compute three times
as many samples as in conventional rendering.

We further show a reference image for comparison at 6400spp.
Then we illustrate the light source visibility from the central pixel
in the images, where red dots indicate visible samples, and black
dots occluded samples on the light. The figures highlight how the
occlusion pattern becomes more complex from top to bottom. The
rightmost column shows the MSE reduction factor of gradient sam-
pling and reconstruction compared to conventional rendering as a
function of α2. Note how from top to bottom the ratio ‖G‖2/‖F‖2
increases, and the amount of error reduction we obtain with opti-
mal α decreases from approximately 15 to 5 and 3. Hence, in the

last row the benefits and additional cost of gradient sampling and
reconstruction approximately balance each other (three times MSE
reduction for three times as many samples).

The MSE reduction plots here are very similar to the theoretical
predictions in Figure 1, but they do not exactly match because we
reuse samples to compute the coarse image and the base paths of the
gradients. This reduces the effectiveness of gradient sampling and
reconstruction, but the reduced sampling costs outweigh the slight
quality degradation in practice. This also explains why the empiri-
cally best value α2 in the plots does not exactly match ‖G‖2/‖F‖2,
although the discrepancy is insignificant in practice.

2 Derivation of Jacobians for G-PT

The Jacobian for the shift mapping used in G-PT can be computed
by conceptually treating it as a concatenation of three steps: repa-
rameterization of the path to coordinates where the shift map is
trivial, a simple shift (like in Section 4 of the main paper), and a
reverse parameterization change. Let us denote the sequence of
path parameters of the base path in the original parameterization
by x̄ and in the new reparameterization by x̂, and similarly for the
shifted offset path by ȳ = T (x̄) and ŷ, respectively. The Jacobian
determinant of the shift is the product of the Jacobian determinants
of these steps,

|T ′| =
∣∣∣∣∂ȳ∂x̄

∣∣∣∣ =

∣∣∣∣∂ȳ∂ŷ
∣∣∣∣ ∣∣∣∣∂ŷ∂x̂

∣∣∣∣ ∣∣∣∣∂x̂∂x̄
∣∣∣∣

The simple shift in the reparameterized space is just the addition of
a constant to the intersection of the path with the image plane, hence
its Jacobian is |∂ŷ/∂x̂| = 1. For the other Jacobians, we interpret
the reparameterizations as a concatenation of separate steps, where
we start at the first path vertex (from the eye, excluding the eye
itself), and apply the change of parameters according to the three
distinct cases occurring in our shift (Section 5.2) step by step. The
overall Jacobian determinant then is simply the product of the deter-
minants for each step. After a case (iii) reconnects to the base path,
all Jacobian determinants are one. We next describe the Jacobian
determinants for the three cases.

The Jacobian for case (i) is unity, because we keep the image po-
sition as the path parameter under the reparameterization. The Ja-
cobian for case (ii), that is, the change of parameterization from in-
cident direction to projected half-vector, is more involved. We first
derive the Jacobian |∂ωi/∂h| for reflection. We start by writing the
incident direction ωi as a function of the projected half-vector h,

ωi(h) = −ωo + 2h(ωo · h), (17)

where ωo is the outgoing direction, considered constant.

Assume we want to compute the Jacobian determinant at a given
half-vector h0. For our derivation we introduce an intermediate
step, which is the projection of a vector v onto the plane perpendic-
ular to h0, denoted v⊥h0 , where h0 is considered a constant unit
vector. We now have

∣∣∣∣∂ωi∂h

∣∣∣∣ =

∣∣∣∣∣ ∂ωi

∂ω
⊥h0
i

∣∣∣∣∣
∣∣∣∣∣∂ω

⊥h0
i

∂h⊥h0

∣∣∣∣∣
∣∣∣∣∂h⊥h0

∂h

∣∣∣∣
=

1

ωi · h0

∣∣∣∣∣∂ω
⊥h0
i

∂h⊥h0

∣∣∣∣∣ (h0 · h) , (18)
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Figure 2: An example “image contribution function” f and its finite difference d ∗ f in a 2D “path space” x̄ = (x, p). Middle: we compare
the predicted MSE in the frequency domain of conventional Monte Carlo integration (black dotted, Equation 6) and gradient domain Monte
Carlo sampling and reconstruction (black, Equation 14). We compare with empirically acquired MSEs (conventional in blue, gradients in
red) over 1000 runs of random sampling.
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Figure 3: We empirically investigate the effectiveness of gradient sampling and reconstruction on a simple scene with an area light source
and a planar occluder with a rectangular grid of circular holes. As the grid becomes denser and the holes smaller, the energy in the gradients
increases. We plot the empirically observed MSE reduction compared to conventional sampling on the right. Notice the close correspondence
to the predicted error to the theoretical prediction in 1.

where we used the fact that the Jacobian determinant of the projec-
tion of a vector onto a plane is the dot product with the unit normal.
We derive the missing Jacobian by expressing h and ωi locally in
coordinates relative to h0, that is

h(ε1, ε2) = h0 + ε1e1 + ε2e2,

ωi(ωi1, ωi2) = h0 + ωi1e1 + ωi2e2,

where e1 and e2 are basis vectors on the plane perpendicular to
h0. This means that by definition h⊥h0 = (ε1, ε2), and ω

⊥h0
i =

(ωi1, ωi2). Hence the missing Jacobian consists of the partial
derivatives ∣∣∣∣∣∂ω

⊥h0
i

∂h⊥h0

∣∣∣∣∣ =

∣∣∣∣∣
∂ωi1
∂ε1

∂ωi1
∂ε2

∂ωi2
∂ε1

∂ωi2
∂ε2

∣∣∣∣∣ .

By plugging h(ε1, ε2) into Equation 17 and differentiating with re-
spect to ε1 and ε2 we obtain

∂ωi1
∂ε1

=
∂ωi2
∂ε2

= 2(ωo · h0),

∂ωi1
∂ε2

=
∂ωi1
∂ε2

= 0.

We can now remove the distinction between h and h0 and substitute
this intermediate result back into Equation 18. We obtain

∣∣∣∣∂ωi∂h

∣∣∣∣ = 4ωo · h, (19)



and this leads to the result used in Equation 11 of the main paper:∣∣∣∣∂ωyi∂ωxi

∣∣∣∣ =

∣∣∣∣∂ωyi∂hy

∣∣∣∣ ∣∣∣∣∂hx∂ωxi

∣∣∣∣ =
ωyo · hy

ωxo · hx
. (20)

In the case of refraction the incident direction is given by Snell’s
law,

ωi(h) =− n2

n1
ωo

+ h

(
ωo · h−

√
1− n2

2

n2
1

(1− (ωo · h)2)

)
, (21)

where n1 and n2 are the indices of refraction. We follow the same
steps as in the case of reflection, where the only difference is the
Jacobian

∣∣∣∂ω⊥h0
i /∂h⊥h0

∣∣∣ in Equation 18. For refraction we ob-

tain this by pluging h(ε1, ε2) into Snell’s law in Equation 21 and
differentiating with respect to ε1 and ε2. We obtain the elements of
the Jacobian

∂ωi1
∂ε1

=
∂ωi2
∂ε2

= h0 · ωo −

√
1− n2

2

n2
1

(1− ωo · h0),

∂ωi1
∂ε2

=
∂ωi1
∂ε2

= 0.

We can now remove the distinction between h and h0 and substitute
this intermediate result back into Equation 18. We obtain

∣∣∣∣∂ωi∂h

∣∣∣∣ =

[
h · ωo −

√
1− n2

2

n2
1

(1− ωo · h)

]2

ωi · h.

By comparing this with Equation 21 we can write this simply as

∣∣∣∣∂ωi∂h

∣∣∣∣ =

∣∣∣ωi + n2
n1
ωo

∣∣∣2
ωi · h

, (22)

and this leads to the result used in Equation 12 of the main paper:

∣∣∣∣∂ωyi∂ωxi

∣∣∣∣ =

∣∣∣∣∂ωyi∂hy

∣∣∣∣ ∣∣∣∣∂hx∂ωxi

∣∣∣∣ =

∣∣∣ωyi +
n
y
2

n
y
1
ωyo

∣∣∣2∣∣∣ωxi +
nx2
nx1
ωxo

∣∣∣2
ωxi · hx

ωyi · hy
. (23)
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