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Figure 1: Comparing gradient-domain path tracing (G-PT, L1 reconstruction) to path tracing at equal rendering time (2 hours). In this
time, G-PT draws about 2,000 samples per pixel and the path tracer about 5,000. G-PT consistently outperforms path tracing, with the rare
exception of some highly specular objects. Our frequency analysis explains why G-PT outperforms conventional path tracing.

Abstract

We introduce gradient-domain rendering for Monte Carlo image
synthesis. While previous gradient-domain Metropolis Light Trans-
port sought to distribute more samples in areas of high gradients,
we show, in contrast, that estimating image gradients is also possi-
ble using standard (non-Metropolis) Monte Carlo algorithms, and
furthermore, that even without changing the sample distribution,
this often leads to significant error reduction. This broadens the ap-
plicability of gradient rendering considerably. To gain insight into
the conditions under which gradient-domain sampling is beneficial,
we present a frequency analysis that compares Monte Carlo sam-
pling of gradients followed by Poisson reconstruction to traditional
Monte Carlo sampling. Finally, we describe Gradient-Domain Path
Tracing (G-PT), a relatively simple modification of the standard
path tracing algorithm that can yield far superior results.
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1 Introduction

Global illumination algorithms seek to estimate the value of each
image pixel defined as a complex integral over the space of light
paths, relying on large numbers of Monte-Carlo samples to avoid
noise. Recent advances [Lehtinen et al. 2013; Manzi et al. 2014]

take advantage of Metropolis sampling to distribute samples ac-
cording not only to pixel values (or path throughput), but also finite-
difference image gradients. This reduces costs by focusing comput-
ing resources onto areas of high variations. Metropolis light trans-
port is notoriously hard to implement, however, and to the best of
our knowledge, Mitsuba [Jakob 2012] is the only publicly-available
implementation of Veach’s original algorithm [Veach and Guibas
1997]. Furthermore, the convergence behavior of Metropolis algo-
rithms is often considered undesirable because they explore path
space in a highly non-uniform fashion. As a consequence, error
appears as entire regions being too dark or too bright, instead of
as noise. This is even more challenging for gradient sampling, be-
cause the areas of high contribution are more sparse. In short, while
Metropolis light transport remains unequaled for challenging light
transport configurations, many practical scenarios can be more eas-
ily handled by standard approaches such as path tracing.

We show, that, maybe surprisingly, we can benefit from rendering
image gradients rather than only pixel values also in standard path
tracing, even without changing sample distributions (Figure 1). We
extend path tracing and shoot, for each base path, additional finite-
difference offset paths shifted by one pixel. This provides us not
only with the image contribution for each path, but also an estimate
of the finite-difference between the two pixels. In the end, we per-
form a screened Poisson reconstruction that combines information
from both sampled pixel values (especially useful for low frequen-
cies) and gradients (much more accurate for high frequencies).

Crucially, our gradient estimates provide much more information
than finite differences of a conventionally sampled image. In both
cases, a gradient is the difference of two pixels. But rather than us-
ing the difference between two sums of uncorrelated random paths,
we estimate gradients by integrating the difference between pairs of
paths that are carefully sampled in a highly correlated fashion. For
this, we design shift mappings that generate path pairs that are “sim-
ilar” so that the differences are small and result in lower variance,
in a manner similar to variance reduction using correlated sampling
or common random numbers in statistics.

We analytically study why gradient rendering can yield better qual-
ity than direct value rendering. A key insight is that the symmetric
operations of finite differencing and Poisson image reconstruction
do not cancel each other in the error of gradient rendering. This
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is because stochastic sampling, which occurs between finite differ-
encing in path space and image reconstruction, scrambles frequency
content through aliasing. We derive formulas that explain how the
efficiency of gradient rendering depends on the power spectrum of
the integrand, that is, the image contribution function. Gradient ren-
dering works best for functions with a frequency falloff (less energy
in high compared to low frequencies), which are typical in natural
images and integrands in light transport. We show precisely how
Poisson reconstruction combines gradient and pixel information to
get the best of both worlds, by relying on regular rendering for low
frequencies and gradient rendering for high frequencies.

In order to simplify implementation, we propose a new shift map-
ping that does not rely on manifold perturbations like the original
shift by Lehtinen et al. [2013], and whose Jacobian, which is nec-
essary to account for the change of path densities introduced by the
shift [Lehtinen et al. 2013; Manzi et al. 2014], is also simple to
evaluate. Finally, we observe that the difference between two pix-
els can be sampled according to either a forward or an inverse shift,
and we show that applying multiple importance sampling between
these two strategies significantly improves quality.

In summary, we make the following contributions:

• A mathematical formulation of the rendering equation suit-
able for estimating image gradients using standard Monte
Carlo sampling.

• A gradient-domain path tracing algorithm that outperforms its
conventional counterpart by up to an order of magnitude in
relative mean squared error at equal render time.

• A frequency analysis of gradient sampling and reconstruction
for Monte Carlo rendering that, under simplifying assump-
tions, provides a theoretical understanding of the practical
benefits of gradient domain rendering.

• Sampling strategies for gradients in path tracing, including
a multiple importance sampling technique for gradients, and
suitable shift mappings to obtain correlated path pairs.

2 Related Work

Derivative Analysis in Rendering Gradients have found many
uses in rendering, typically in criteria for adaptive sampling, re-
construction, or prefitering mipmap levels. In contrast, we con-
sider finite differences and seek to directly estimate the final im-
age through gradients. Irradiance caching [Ward et al. 1988] is
an early example that computes high quality irradiance samples at
sparse locations, and estimates an upper bound on the irradiance
gradients to control their density. Many improvements of this ba-
sic scheme have been proposed, including more accurate gradient
estimates [Ward and Heckbert 1992], extensions to low-frequency
glossy materials [Křivánek et al. 2005], participating media [Jarosz
et al. 2008a; Jarosz et al. 2008b], or higher order derivatives [Jarosz
et al. 2012; Schwarzhaupt et al. 2012]. While most variants were
developed with an eye towards practical applicability, Ramamoorthi
et al. [2007] conducted a more comprehensive first-order analysis
of lighting, shading, and shadows in direct illumination. As a proof-
of-concept, they also describe an adaptive sampling algorithm. Ray
differentials [Igehy 1999] were developed to approximate partial
derivatives of the ray geometry, in particular for texture filtering.

The (local) frequency analysis of light transport [Durand et al.
2005] is related to derivative analysis since it also attempts to obtain
additional information in a neighborhood of light paths. Interest-
ingly, there is a close connection between second order derivatives
and Gaussian approximations of local frequency spectra [Belcour
et al. 2014].

A key difference between the work discussed above and our ap-
proach is that we directly sample finite pixel differences, instead
of using closed form approximations of the derivative. A crucial
advantage of our approach is that our sampled image gradients are
unbiased estimates, and we can exploit these samples to obtain un-
biased final images. If closed form gradient approximations are
used for image reconstruction, bias cannot be avoided.

Gradient-domain Metropolis Light Transport Metropolis
Light Transport (MLT) [Veach and Guibas 1997] constructs a
Markov chain of light paths that is distributed proportionally to
image contributions. In gradient-domain MLT (GMLT) [Lehtinen
et al. 2013], the random walk is performed on an extended space
of pairs of paths in adjacent pixels, such that the sampler is driven
towards pairs where the light throughput between the two paths
differs significantly. The process directly estimates the horizontal
and vertical finite differences (gradients) across the image, which
are then integrated by solving a Poisson equation. It is easy to
derive that the final reconstruction is an unbiased estimate, as is
standard MLT, if the Poisson problem is solved under an L2 norm.

Lehtinen et al. [2013] showed that GMLT can reduce variance sig-
nificantly at equal computation time compared to standard MLT.
A key intuition for the effectiveness of GMLT is that gradients are
sparser than the image itself, and can be sampled with less vari-
ance. In practice, however, robust sampling of gradients is chal-
lenging because of this very sparsity. Recently, Manzi et al. [2014]
introduced improved gradient sampling techniques for GMLT that
make unbiased reconstruction practical. An important insight of
this work is that there is considerable freedom in how to sample
gradients, which indicates that there is more room for future im-
provements. Drawing from GMLT, we develop a similar gradient
sampling and reconstruction framework for Monte Carlo rendering,
building on standard path tracing. Unlike GMLT, we do not change
the sampling density of the underlying renderer.

Gradients in Image Processing and Natural Images Gradient-
domain rendering is inspired by the role of gradients in image pro-
cessing. Gradients of natural images tend to be sparse [Ruderman
1994; Simoncelli and Olshausen 2001], hence providing a succinct
image representation. As the power spectrum of natural images
is approximately inversely proportional to the square of frequency,
gradients generally contain much less energy than the original im-
age. This motivates us to sample gradients directly, expecting less
variance because the signal has less energy. Interestingly, Tumblin
et al. [2005] envision a camera that directly captures gradients. Ma-
nipulating image gradients instead of pixel values has proven to be
an elegant strategy to develop numerous intuitive and effective im-
age editing algorithms [Pérez et al. 2003; Georgiev 2005]. We sim-
ilarly solve a Poisson equation to determine the final image from
sampled gradients, also including a coarsely sampled primal image
to aid the reconstruction of low frequencies [Bhat et al. 2010].

Image Reconstruction using Adaptive Filtering Adaptive
filtering techniques reconstruct the final image by computing
weighted averages over image space, typically using spatially adap-
tive weights. The weights can be determined, for example, using
spatially varying (anisotropic) Gaussians [Rousselle et al. 2011;
Belcour et al. 2013], DCT [Bolin and Meyer 1995] or wavelet
transforms [Overbeck et al. 2009], or (cross-)bilateral filtering [Sen
and Darabi 2012; Li et al. 2012; Rousselle et al. 2013]. All these
techniques introduce bias. Screened Poisson reconstruction also
computes output pixels as weighted averages, however, including
both unbiased pixel and gradient samples. In contrast to other tech-
niques, this does not introduce bias.
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Figure 2: Key principle of gradient-domain rendering: We sample
base paths using a Monte Carlo estimator, such as path tracing.
We shift each base path to an offset path using a deterministic shift
mapping, and the difference between the base and offset path serves
as a gradient sample (Figure from Lehtinen et al. [2013]).

3 Overview

The defining idea of gradient-domain rendering is to sample image
gradients, that is differences between pairs of neighbor pixels, in
addition to pixel values. In contrast to gradient-domain Metropolis
light transport [Lehtinen et al. 2013; Manzi et al. 2014], we use a
regular Monte Carlo sampling strategy to evaluate gradients. While
a standard path tracer evaluates only the image contribution func-
tion for each sampled path, we evaluate, in addition, a path dif-
ference function defined by a shift mapping that maps each base
path to a “similar” offset path through the neighbor pixel, as shown
in Figure 2, and returns the difference between the contribution of
the base and offset path. We will show that good shift mapping
reduces variance by constructing offset paths such that the contri-
butions of base and offset paths are as similar as possible. After
sampling is complete, we reconstruct the final image by solving a
screened Poisson problem, where the regular image provides lower
frequencies, and the gradient image contributes most high frequen-
cies, effectively suppressing high frequency noise in the result.

Mathematical Formulation We first need to precisely define the
gradients (pixel differences) that we sample. While the basic math-
ematical formulation follows previous work [Lehtinen et al. 2013;
Manzi et al. 2014], we will use fundamentally different sampling
strategies. We denote the difference between two pixels i and j by
∆i,j . Using the path space formulation of light transport [Veach
and Guibas 1997] this is

∆i,j =

(
h(x) ∗

∫
Ω

f(x, p̄)dµ(p̄)

)
(xi)

−
(
h(x) ∗

∫
Ω

f(x, p̄)dµ(p̄)

)
(xj),

(1)

where x is the image coordinate, h(x) is a pixel filter, Ω is the
space of all light paths of all lengths that can be sampled with a
given standard Monte Carlo path tracer, (x, p̄) is a light path with
additional parameters p̄ connecting a point on a light and a point on
the sensor, and f is the image contribution function. We evaluate
the convolution with the pixel filter at pixel centers xi and xj .

In contrast to Equation 1, in gradient-domain rendering we formu-
late gradients as a single integral and estimate the differences using
correlated sample pairs. For each path sample that we draw for
pixel i, we deterministically map it to a “similar” path through the
nearby pixel j, and take the difference between them. Specifically,
we rewrite Equation 1 as the integral of a path difference function
gij(x, p̄) instead of the usual image contribution function f(x, p̄),

∆i,j =

(
h(x) ∗

∫
Ω

f(x, p̄)− f(Tij(x, p̄))
∣∣T ′ij∣∣ dµ(p̄)

)
(xi)

=

(
h(x) ∗

∫
Ω

gij(x, p̄)dµ(p̄)

)
(xi), (2)

where Tij is the shift mapping that deterministically maps a base
path (x, p̄) to an offset path Tij(x, p̄), such that they are “close” to
each other in path space (Figure 2). We only allow shifts by a unit
pixel distance, which means that the offset path Tij(x, p̄) has the
same pixel filter value as the base path. Hence we can express pixel
filtering of gradients as a single convolution. The factor |T ′| =
|∂T/∂x̄| is the determinant of the Jacobian of T (x̄), accounting for
the change of integration variables [Lehtinen et al. 2013].

Next, we will next derive a frequency analysis to explain why sam-
pling gradients is beneficial, and how to best combine regular and
gradient information. We then describe a practical algorithm that
makes it possible to extend standard Monte-Carlo path tracing to
leverage gradient-domain rendering. In particular, we present a
multiple importance sampling strategy that dramatically improves
performance in cases where the shift map has singularities, and a
new shift mapping that is much simpler to implement than previous
work. This makes the modifications required to convert a standard
path tracer to a gradient path tracer quite easily manageable.

4 Theoretical Analysis

This section describes the first end-to-end analysis of the sampling
and reconstruction process involved in gradient-domain rendering.
While previous work has investigated the frequency analysis of the
screened Poisson equation [Bhat et al. 2008; Lehtinen et al. 2013],
Lehtinen et al. [2013] only observed that Poisson reconstruction
weights gradient information in high frequencies more, but they
did not provide a full analysis that includes sampling and recon-
struction. In contrast, we present a complete analysis that pin-
points why gradient sampling followed by Poisson reconstruction
is beneficial. Under certain simplifications, the analysis predicts
precisely by how much gradient-domain rendering reduces vari-
ance in each frequency compared to conventional sampling. We
present an overview and the main results of our analysis here, and
refer to the supplemental material for the detailed derivations. We
first study the error in gradient estimation compared to usual pixel
estimation that is caused by Monte Carlo integration (Section 4.1).
Then we analyze screened Poisson reconstruction (Section 4.2) to
understand the error distribution over frequencies of the final image.

4.1 Error Analysis of Gradient Estimation

Gradient estimation involves computing and sampling path differ-
ences, Monte Carlo integration over path space, and pixel filtering.
To make this problem amenable to Fourier analysis, we make the
following simplifications: First, we work with 1D images to reduce
clutter in the notation. Next, we assume paths are parameterized
over a Cartesian hypercube, akin to the primary sample space by
Kelemen et al. [2002], and the first path dimension is the image
axis. We hide all terms related to the measure in path space in
the image contribution function. We restrict the analysis to uni-
form random sampling in this parameterization. We also assume
that sampling is a wide-sense stationary stochastic processes. This
implies that it extends over an infinite domain, which simplifies its
frequency analysis because there are no boundary effects, but also
means that we cannot model the restriction of the sampling grid
to the unit hypercube. Assuming sampling over an infinite domain
instead of restricting the samples around the non-zero support re-
gion of the integrand overestimates variance compared to practical

To appear in ACM Transactions on Graphics (Proc. SIGGRAPH 2015)



P
at

h
 d

im
en

si
o
n
 p

 Image dimension x

(h) MSE over image freq. ωx, reduction

   by                            for high freq.

(a) Image contribution
function f

(d) Gradient function g = d * f 
over image dimension x

(g) MSE reduction as function of Poisson

parameter α2, optimum at                         2‖F‖/2‖G‖=∗
2α

-0.5 -0.25 0 0.25 0.5
0

1

2

3

4

 

MSE, x 104

ωx

conventional

MSE reduction

α2

0 0.2 0.4 0.6 0.8 1
0

2

4

6

 

conventional
1

3

5

2‖F‖/2‖G‖=∗
2α

2‖G‖4 /2‖F‖>

Fourier transform
Stochastic sampling, 

uniform random distribution
Integration (slicing), pixel filt.,

Poisson reconstruction
C

o
n
v
o
lu

ti
o
n
, 
g
ra

d
ie

n
t 

o
p
. 

d

(b) Power spectrum         ,
energy      

(c) Mean power spect.
of sampled F,
MSE              

(e) Power spectrum          ,
energy       

(f) Mean power spect.

of sampled G, MSE             

Image frequencies ωx
P

at
h
 s

p
ac

e 
fr

eq
. 
ω

p

Main results

2|F|
2‖F‖

2‖F∝ ‖

2|G|
2‖G‖ 2‖G∝ ‖

empirical

theory

gradient domain:

empirical

theory

gradient domain:

Figure 3: Overview of our frequency analysis (a-f) and its main results (g,h). Given an image contribution function f that we need to integrate
over path dimension p to get an image (a), we express gradients g as a convolution of f with a gradient operator d in path space (d). We
analyze stochastic sampling of f (b,c) and g = d∗f (e,f) in the frequency domain. The error due to sampling turns out to be constant over all
frequencies. It appears as a flat, gray background in (c,f), and it is typically smaller for gradients (f). Next, integration over path dimension
p corresponds to slicing along the red lines in (c) and (f). Poisson reconstruction combines the two slices to form the final image using a
parameter α. Our main results include the derivation of the optimal parameter α∗ that leads to the highest error reduction over conventional
rendering (g), and an error analysis of the final output that shows how high frequency error (close to the Nyquist frequency 1/2 of the image
sampling grid) is strongly reduced (h). Empirical results of the 2D example shown here (red lines in g,h) closely match our theory.

algorithms. Finally, we use a simple shift mapping that only shifts
the image coordinate by one pixel and leaves the other parameters
untouched. This mapping has a unit Jacobian and determinant.

Given an image contribution function f defined over an image axis
x and an arbitrarily long vector of path parameters p̄ (Figure 3a),
the problem is to integrate over p̄ to obtain a sampled image and its
gradients. We model gradient-domain rendering by first defining
the shift mapping T and the corresponding path difference function
g in path space. For this analysis we use a simple shift mapping
T (x, p̄) = (x − 1, p̄). We omit the indices ij because we employ
this same shift everywhere over the image. Therefore, the path dif-
ference function is simply g(x, p̄) = f(x, p̄)− f(x− 1, p̄), which
we may write as a convolution g(x, p̄) = (d ∗ f)(x, p̄) with a dif-
ference operator d(x, p̄) = δ(x) − δ(x − 1). This is shown in
Figure 3d, where we apply finite differencing horizontally along
the image dimension x, but not vertically over path parameters p̄.

In the Fourier domain (Figure 3b and 3e) g = d ∗ f is a multi-
plication G = DF . The power spectrum of the path difference
function |G|2 is related to the power spectrum of the image contri-
bution function |F |2 by

|G(ωx, ωp̄)|2 = (2− 2 cos(2πωx))|F (ωx, ωp̄)|2

= |D(ωx, ωp̄)|2|F (ωx, ωp̄)|2,
(3)

where ωx and ωp̄ are frequencies over the image and path space, re-
spectively, and |D|2 = (2−2 cos(2πωx)) is the power spectrum of

the finite-difference operator (as opposed to the continuous deriva-
tive, which would attenuate frequencies by 1/ω2

x). We get the well
known result that finite-differencing cancels out the DC, attenuates
low frequencies, and boosts square magnitudes of high frequencies
by a factor up to four for the Nyquist limit ωx = 1/2 of the image
(unit pixel spacing).

We then analyze stochastic sampling of both the image contribution
F and the path difference functionG in the frequency domain (Fig-
ure 3c and 3f), and we derive the mean square error (MSE) intro-
duced by sampling, which is equivalent to the variance. Sampling is
a multiplication by a union of Diracs in the primal and a convolution
in the Fourier domain, and we can interpret the error due to sam-
pling as aliasing [Dippé and Wold 1985; Durand 2011]. We model
uniform random sampling as a Poisson process, whose power spec-
trum is flat except for a Dirac at the DC [Leneman 1966]. As a
key consequence, the stochastic convolution results in constant ex-
pected errors |εF (ωx, ωp̄)|2 and |εG(ωx, ωp̄)|2 for all frequencies
for both pixels and gradients,

|εF (ωx, ωp̄)|2 =
1

n
‖F‖2,

|εG(ωx, ωp̄)|2 =
1

n
‖G‖2,

(4)

which are inversely proportional to the sampling density n. In ad-
dition, the constants ‖F‖2 and ‖G‖2 are given by the total energy
of the signals, that is, the integral over image and path dimensions
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For the checkerboard, the MSE of gradients oscillates between val-
ues zero and two, as the pattern switches between positive and neg-
ative correlation with the finite differencing stencil. The pixel MSE
is independent of the checkerboard frequency, since we sample uni-
formly without stratification. The dotted line indicates the Nyquist
frequency of the pixel grid. Even for pattern frequencies close to
the Nyquist limit, gradients exhibit less MSE than pixels.

of the power spectra in Equation 3,

‖F‖2 =

∫
|F (ωx, ωp̄)|2dωxdωp̄,

‖G‖2 =

∫
(2− 2 cos(2πωx))|F (ωx, ωp̄)|2dωxdωp̄.

(5)

The MSE appears as a flat gray background in Figure 3c and 3f.
The difference in brightness of the flat background indicates the
difference in MSEs of the sampled signals.

Next, we model integration over path space to obtain the sam-
pled image and its sampled gradients by slicing in the Fourier
domain. After slicing, we convolve with an ideal pixel filter,
which eliminates errors in frequencies above the Nyquist limit
ωx = 1/2. We denote the resulting MSE of the integrated
pixels |εF (ωx)|2 = |εF (ωx, 0)|2 and the MSE of the gradients
|εG(ωx)|2 = |εG(ωx, 0)|2, and conclude

|εF (ωx)|2 =
1

n
‖F‖2, if |ωx| < 1/2, otherwise 0,

|εG(ωx)|2 =
1

n
‖G‖2, if |ωx| < 1/2, otherwise 0.

(6)

Our MSEs come out as energies instead of variances here because
of our sampling assumptions, which are crucial to be able to per-
form the derivation in simple terms. The means of our functions
over the infinite sampling domain are zero, hence their energies
represent their variances.

Discussion The integrals for ‖F‖2 and ‖G‖2 are the same ex-
cept for the weight |D(ωx)|2 = (2 − 2 cos(2πωx)) introduced
by finite differencing. This reveals that the difference between the
pixel error |εF |2 and gradient error |εG|2 depends on the relative
amount of low and high frequencies in the image contribution func-
tion. In the best case for gradient estimation, all the energy is in the
low frequencies, and as |D(ωx)|2 weights them down, the gradi-
ent energy can be arbitrarily smaller. At worst, all the energy is in
the high frequencies and gradient estimates are four times as bad as
pixel estimates. Interestingly, the spectra of typical image contri-
bution functions appear to be are favorable to gradient estimation:
like natural images, they are dominated by sharp edges, and hence
follow an inverse square power law.

In Figure 4 we illustrate the benefits and limitations of gradient
compared to pixel sampling for two prototypical signals. The first
defines the image contribution function as a (multidimensional)
checkerboard pattern, and the second uses band-limited noise, both
with amplitude one. Both cover an infinite domain of arbitrary di-
mensionality (arbitrary many path parameters p̄). Dimensionality
does not matter for our analysis since the difference operator |D|2
does not change the frequency spectra over the path dimensions.

For the checkerboard pattern (Figure 4a), we compare the MSE of
the pixels |εF |2 and the MSE of their gradients |εG|2 (given by the
energies ‖F‖2, ‖G‖2, Equation 4) for different frequencies φc of
the checkerboard tiles. Frequency φc = 0.5 means the side-length
of tiles is one pixel unit (two pixels for one cycle of the pattern).
For the noise pattern (Figure 4b), we show the same comparison for
different band-limits φn of the noise. Similarly, φn = 0.5 means
noise is cut off at the Nyquist frequency of the pixel grid.

In both cases, as the pattern frequency increases, their energies be-
come less and less dominated by low frequencies. Hence the gra-
dient MSE increases, and climbs above the pixel MSE for high fre-
quency patterns close to the Nyquist limit. This is to be expected
since |D|2 amplifies the square magnitudes of these frequencies by
a factor of up to four. But for frequencies not much below, gradient
MSEs drop below pixel MSEs. For the square wave, the frequency
where gradients have less MSE is at exactly φc = 0.25, which cor-
responds to checkerboard tiles of only two pixels (four pixels per
cycle). For the noise pattern, gradients have less MSE than pixels
at even slightly higher noise cutoff frequencies φc ≈ 0.3. This in-
dicates that gradient sampling is effective even for high-frequency
patterns close to the Nyquist limit of the pixels.

4.2 Analysis of Screened Poisson Reconstruction

We conclude the end-to-end analysis by deriving the spectral MSE
of the final image obtained through screened Poisson reconstruc-
tion. Screened Poisson reconstruction combines the image and its
gradients using a parameter α that specifies the relative weights of
the sampled image and the gradients. We explicitly include the
MSEs of the input image pixels |εF |2 = ‖F‖2/n and their gradi-
ents |εG|2 = ‖G‖2/n (Equation 4) in our analysis and derive the
per-image frequency reconstruction error

|εRα(ωx)|2 =
1

n

α4‖F‖2 + |D(ωx)|2‖G‖2

(α2 + |D(ωx)|2)2
. (7)

Discussion To clearly understand the benefits of Poisson re-
construction, we plot the frequency-dependent reconstruction error
|εRα(ωx)|2 for different values α (Figure 5). If we set α = ∞,
we consider only the pixel information and the reconstruction error
becomes equivalent to the pixel error |εR∞ |2 = ‖F‖2/n. More in-
teresting is setting α = 0, which means we consider only gradients.
Then the reconstruction error amounts to

|εR0(ωx)|2 = 1/n · ‖G‖2/|D(ωx)|2

= 1/n · ‖G‖2/(2− 2 cos(2πωx)).
(8)

This confirms that gradient rendering is most beneficial for high
frequencies and has a singularity for the DC. The image frequency
where it may become beneficial depends on the relative energy of
the path difference function and the image contribution function,
‖G‖2/‖F‖2. In the worst case, we saw that ‖G‖2 is four times
bigger than ‖F‖2, and the factor four gets canceled by the denom-
inator in Equation 8 at the Nyquist limit. Compared to direct pixel
rendering, the gradient reconstruction error therefore is the same
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Figure 5: Poisson reconstruction combines noisy pixels with MSE
|εF |2 and gradients with MSE |εG|2 using a parameter α, weight-
ing the influence of these two inputs. Reconstruction |εR0 |2 with
α = 0 (blue lines) uses only gradients. It reduces high fre-
quency error, but error explodes at low frequencies. At the opti-
mal α∗ (red lines), the reconstruction error is at most the pixel
variance |εF |2 at low frequencies, but is smaller than |εF |2 by
a factor > 4‖F‖2/‖G‖2 at high frequencies. The signal on the
left corresponds to a checkerboard pattern with a tile size of eight
pixels (‖G‖2/‖F‖2 = 0.25 corresponds to φc = 0.0625, and
1/(2× 0.0625) = 8). The signal on the right corresponds to a tile
size of about 2.5 pixels.

for the highest frequency and worse for lower frequencies. As dis-
cussed above, typical image contribution functions tend to follow
an inverse square power law. Hence finite differencing reduces their
energies significantly and gradient reconstruction is beneficial for
much of the spectrum except very low frequencies.

A key observation about Equation 8 is that the factor 2 −
2 cos(2πωx) in the denominator is the inverse of the finite differ-
encing operator we applied in the beginning to sample path differ-
ences. Hence, both finite differencing and Poisson reconstruction
correspond to a per-frequency weighting of the power spectrum by
a cosine function, which appears both in the numerator and the de-
nominator in Equation 8. However, the factors do not cancel each
other out, because the error of sampling finite differences is hidden
in the integral of the gradient energy ‖G‖2 (Equation 5) due to the
frequency scrambling or aliasing caused by stochastic sampling. It
results in a lower energy and lower sampling error for gradients
of functions with a frequency falloff. In contrast, the reconstruc-
tion affects the denominator and applies the inverse weight to the
final image, which explains why gradient solutions reduce high fre-
quency error.

Optimal Reconstruction It is easy to derive the value α∗(ωx)
at each frequency that optimally combines pixels and gradients as
α2
∗(ωx) = ‖G‖2/‖F‖2. It is interesting to plot the per frequency

error at the optimal value α∗, which turns out to be

|εRα∗ (ωx)|2 =
1

n

‖G‖2‖F‖2

‖F‖2|D(ωx)|2 + ‖G‖2 ,

shown as red lines in Figure 5. At low frequencies, the recon-
struction MSE approaches the pixel MSE ‖F‖2/n, but it falls off
quickly. For high frequencies approaching ωx = 0.5 we take full
advantage of the gradients and the MSE goes below ‖G‖2/(4n).

It is important to understand that so far we compared conventional
sampling with n samples with gradient-domain rendering with n
conventional and n gradient samples. In this setup gradient-domain
rendering at optimal α∗ cannot be worse than conventional render-
ing. However, at equal number of individual path samples (counting

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5
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15 MSE reduction (MSE conv./MSE grad.-domain, 
                           equal number of base samples)

α2

Figure 6: Error reduction of gradient sampling and reconstruc-
tion for 2D images: We plot the factor by which gradient sampling
and reconstruction reduces the total MSE compared to conventional
sampling and integration at equal number of base samples. We
show different energy ratios ‖G‖2/‖F‖2 ∈ {0.2, 0.4, 0.6, 0.8},
corresponding to the curves from top to bottom (purple to red). Note
that each curve achieves its maximum at α2 = ‖G‖2/‖F‖2.

each gradient as two path samples), gradient-domain rendering be-
comes ineffective if ‖F‖2/‖G‖2 < 1. In addition, our practical al-
gorithm obtains correlated gradient and conventional samples, and
as a consequence, the optimal α∗ is not applicable as we discuss in
Section 6.

Main Insights Our complete analysis leads to two main insights:
first (Figure 3g), under our simplifications, the optimal recon-
struction parameter is given by the ratio of the total energies of
the gradient function and the image contribution function, α2

∗ =
‖G‖2/‖F‖2; second (Figure 3h), gradient-domain rendering re-
duces high frequency variance of the reconstructed output com-
pared to conventional sampling by more than 4‖F‖2/‖G‖2.

Finally, we investigate the reduction in total (as opposed to per-
frequency) MSE of gradient-domain over conventional rendering
at equal number of base path samples, for 2D images. That is,
we compare the MSE of conventional rendering with n samples
to gradient-domain rendering with n base paths, and in addition,
one horizontal and vertical offset path. For this we numerically in-
tegrate a 2D version of the per-frequency reconstruction error in
Equation 7 over all image frequencies. We plot the resulting ratio
of the total error of conventional compared to gradient-domain ren-
dering in Figure 6 for various ratios energy ratios ‖G‖2/‖F‖2 ∈
{0.2, 0.4, 0.6, 0.8} over values α ∈ (0, 1). For each ratio, the MSE
reduction is best when that ratio is used as α, as described above.
We will demonstrate similar practical benefits in Section 6.

5 Gradient-Domain Path Tracing

We now introduce gradient-domain path tracing (G-PT), a sim-
ple extension of its standard counterpart [Kajiya 1986; Veach and
Guibas 1995] that leverages additional gradient estimates (Algo-
rithm 1). The gradient-domain path tracer draws a number of ran-
dom paths using standard path sampling, and it writes their contri-
butions into a “primal” image like in conventional renderers. The
key difference is that we trace additional paths through neighbor-
ing pixels to compute finite differences (innermost loop in Algo-
rithm 1). For each base path x̄ = (x, p̄) that contributes to a pixel i,
we obtain the offset paths needed for finite-difference computation
with a set of neighboring pixels j ∈ Φi by applying a shift mapping
Tij . We use each offset path ȳ = Tij(x̄) to compute one gradient
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Input: Scene and camera specification, number of samples N .
Output: Path-traced image I , gradient images ∆·,j .
for all sampled base paths x̄ = (x, p̄) do

for all pixels i where h(x− xi) > 0 do
// Write path contribution to primal image
Ii := Ii + h(x− xi)f(x̄)/p(x̄)
for all neighbor pixels j ∈ Φi of i do

ȳ := Tij(x̄); // offset path using shift Tij

// gradient MIS weight wij(x̄) see Section 5.1
∆i,j := ∆i,j + wij(x̄)h(x− xi)(f(x̄)− f(ȳ)|T ′ij |)

end
end

end
I := I/N ; ∆,̇j := ∆·,j/N , for all j
Reconstruct(I , ∆·,·,α)
Algorithm 1: Pseudocode for gradient-domain path tracing, where
we sample gradients in the innermost loop. Here N is the total
number of samples.

sample by taking the difference to the base path. We store the gra-
dient samples in gradient images ∆·,j , that is, we have one gradi-
ent image for each neighbor index j. Finally we perform screened
Poisson reconstruction to combine primal and gradient values as in
previous work [Lehtinen et al. 2013; Manzi et al. 2014].

While the principles of gradient rendering are simple, we must
make sure that sampling our single integral of the path difference
function (Equation 2), in fact, corresponds to the difference of the
two corresponding pixel integrals (Equation 1). We must pay atten-
tion to the invertibility of the shift to make sure all path differences
are considered equally. We achieve this by sampling a given pixel
difference both as a forward or backward finite difference, as in Al-
gorithm 1, and weighting them appropriately. In addition, this pro-
vides us with an opportunity to reduce variance through multiple
importance sampling (MIS), which is highly effective to suppress
gradient sampling artifacts. Finally, shift maps proposed in previ-
ous work can be hard to implement and costly to compute because
they rely on manifold perturbation [Jakob and Marschner 2012].
We propose a simpler shift map that is suitable for path tracing.

5.1 Symmetric Gradients and MIS

The gradient integral in Equation 2 only computes pixel differences
correctly if the shift mapping is a bijection of all of path space sam-
pled by the Monte Carlo path tracer onto itself. In practice, it is
hard to design such shift mappings. We build on the symmetric
gradient formulation by Manzi et al. [2014] to obtain a formulation
that does not impose such requirements. In addition, we adapt the
formulation to include continuous weights, which we will exploit
to reduce gradient sampling artifacts using MIS.

Symmetric Gradients A practical shift mapping may not gener-
ate all paths Ω that can be sampled by the path tracer, and it may
also produce blocked paths that will never be sampled by the path
tracer (i.e., it may sample paths outside Ω; their contribution will
always be zero). First, assuming the shift is invertible, we compute
gradients symmetrically using the sum of two integrals, one using
the original forward shift and the other its inverse (Figure 7),

∆i,j =

(
h(x) ∗

∫
Ω

wij(x, p̄)gij(x, p̄)dµ(p̄)

)
(xi)+(

h(x) ∗
∫

Ω

wji(x, p̄)gji(x, p̄)dµ(p̄)

)
(xj).

(9)

1st integral,

forward mapping

f -f

Ω

Ω

Ω

Ω

Tij

Tji2nd integral,

inv. mapping

f -f

Figure 7: To compute a correct gradient we need to integrate f
over all of path space Ω twice, once with positive and once with
negative sign (Equation 1). Shift mappings may not be invertible
in some regions Ω0 (black), and we fall back to computing naive
gradients there. In additon, the shift may not cover all of Ω, and
may map some paths to regions outside Ω. The forward mapping
formulation correctly integrates f over Ω \ Ω0, but covers only a
part of Ω \ Ω0 with −f , and similar for the inverse mapping. Red
areas are covered twice, and by weighting them with weights that
sum to one we make sure to get their correct contribution.

We observe that if both a base path and its offset path can be sam-
pled by the path tracer then the corresponding path difference oc-
curs in both integrals. We call such base-offset pairs symmetric.
We handle symmetric paths by introducing weights wij and wji,
and making sure they add up to one. If an offset path cannot be
sampled by the path tracer, that is Tij(x, p̄) /∈ Ω, we simply set
wij(x, p̄) = 1, and similarly for the second integral.

Second, we also allow shift mappings Tij that may not have an
inverse, denoted Tji, in a subspace Ω0 of all sampled base paths
Ω. We deal with non-invertibility by simply evaluating the gradient
naively over Ω0 using Equation 1. We implement this by ignoring
offset paths Tij(x̄) generated by non-invertible shifts, and setting
the weights to wij(x̄) = 1 and wji(x̄) = 0.

Multiple Importance Sampling for Gradients We introduce a
multiple importance sampling (MIS) technique for gradients that
addresses an important issue that has hampered previous gradient-
domain rendering techniques [Lehtinen et al. 2013; Manzi et al.
2014]. Intuitively, shift mappings cause a change of path densities
(Figure 8). If one were to shift a set of close-by base paths to a
set of offset paths, the density of the obtained offset paths will be
different from the density in that region that the underlying path
sampler (a path tracer in our case) would produce. Mathematically,
the Jacobian determinant of the shift accounts for this stretching or
squeezing of path space. Unfortunately, this Jacobian determinant
can become arbitrarily large if the shift moves a path into a region
of path space that is sampled with much higher density by the un-
derlying path sampler. This forces gij(x, p̄) to take large values,
and yields samples of high variance that produce strong artifacts,
in particular when using L2 Poisson reconstruction. It is important
to observe that the inverse case, shifting from a high to a low path
density region, is much less problematic. In this case, an arbitrarily
small Jacobian determinant (Equation 2) simply means that we will
record the base path as the gradient, which is not worse than what
happens in naive gradient sampling (Equation 1).
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(a) Base and offset paths
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Figure 8: A simple shift (like case (iii) in Section 5.2) maps a neigh-
borhood of base paths to corresponding offset paths by moving a
vertex on the base paths. The density of the shifted offset paths
in (a) is much lower than the density produced by the path tracer
in (b) in that region. The Jacobian for the shift compensates for
the change in path density, and it becomes arbitrarily large as the
shifted vertex approaches the corner.

We exploit the two ways we have available for sampling symmet-
ric gradients to address this issue, and weigh them using a novel
MIS strategy for gradients. We interpret the forward and inverse
mappings as two sampling techniques to obtain the same base path
x̄: (1) we sample x̄ directly, or (2), we sample an offset path
ȳ = Tij(x̄), and then map ȳ to x̄ via the inverse shift, x̄ = Tji(ȳ).
To compute MIS weights we need to derive the probability densities
p1(x̄) and p2(x̄) corresponding to these two techniques.

Let us denote the probability density for paths generated by our path
sampler as p, and observe that both paths x̄ and ȳ in our description
are distributed according to p. This means p1(x̄) = p(x̄). To obtain
p2(x̄), we evaluate p(ȳ) by interpreting ȳ as a function of x̄. In
other words, we substitute ȳ = Tij(x̄), and following the rules for
variable substitutions for probability densities this yields p2(x̄) =
p(Tij(x̄))|T ′ij(x̄)|. This leads to the balance heuristic weights

wij(x̄) =
p(x̄)

p(x̄) + p(Tij(x̄))|T ′ij(x̄)| . (10)

We see that gradients with a large Jacobian determinant |T ′ij(x̄)| ob-
tain a MIS weight of approximately 1/|T ′ij(x̄)|, which cancels their
large contribution. In Algorithm 1, we need to check if a path x̄ is
symmetric. If this is the case, we use the MIS weight for wij(x̄),
otherwise the weight is one. We show in Figure 9 how MIS effec-
tively reduces gradient sampling artifacts.

5.2 A Novel Shift Mapping for G-PT

We demonstrated in Section 4 that the energy ‖G‖2 of the path
difference function g(x, p̄) directly affects the final error in the
Poisson reconstructed image (Equation 7); hence shift mappings
should minimize this energy. This happens if they produce offset
paths whose image contributions (times their Jacobians) are as sim-
ilar as possible to those of their base paths, such that the integrand
g(x, p̄) = f(x, p̄) − f(Tij(x, p̄))|T ′ij | contributes as little as pos-
sible to the total energy ‖G‖2. Lehtinen et al. [2013] and Manzi
et al. [2014] developed such mappings in the context of gradient-
domain Metropolis sampling. We propose a simpler alternative that
is more efficient to compute because its Jacobian determinant only
relies on local information, and we can compute it step by step with-
out requiring costly numerical optimization inherent to the mani-
fold perturbation [Jakob and Marschner 2012] in previous work.

Intuitively, we achieve similar path contributions when the geom-
etry of the base and offset paths are similar, and when the BSDF
values at each vertex do not change much. A natural idea is hence

Pixels, 1spp L2 rec., with MIS L2 rec., without MIS

Figure 9: Effect of multiple importance sampling on L2 recon-
struction quality at one sample per pixel. Without MIS (right) large
Jacobians close to concave edges lead to gradient outliers, and they
cause artifacts in the reconstruction.

to re-use as many segments of the base path in the offset path as
possible. The offset path, which starts with a shifted segment at the
eye, should be reconnected to the base path as soon as possible. We
need to be careful, however, when choosing the connecting segment
to the base path. If (near-)specular interactions are involved, this
may lead to large changes in BSDF values and path contributions,
which we want to avoid. Therefore, our strategy is to replicate the
half-vectors (projected to the local tangent plane) of the base path in
the offset path as long as we encounter (near-)specular interactions.
We connect to the base path only when the connecting segment
does not include any (near-)specular vertices. This reasoning fol-
lows Jakob and Marschner [2012] and Kaplanyan et al. [2014], who
show that for glossy materials path throughput is a mostly smooth
function in the half-vector parameterization. Similar to Jakob and
Marschner [2012] we also classify each path vertex as either dif-
fuse or specular using a threshold on material roughness to detect
(near-)specular interactions.

We illustrate a shift mapping based on these ideas in Figure 10.

Step (i): Initial Offset Segment We start from the camera and
shift the direction of the primary ray by one pixel. This results in a
new primary hit on the offset path (Figure 10a, step (i)).

Step (ii): Tracing Additional Segments If the current or next
base vertex is classified as specular, we continue tracing offset seg-
ments to avoid large changes in (near-)specular BSDFs. We de-
termine the incident direction for the next offset segment from the
projected half-vector of the corresponding base vertex (Figure 10a,
step (ii)). We need to be careful, however, to check whether the re-
sulting shift is invertible. First, the shift is not invertible if the next
base and the new next offset vertex have a different specular/diffuse
classification. Second, consider a refraction that leads to total inter-
nal reflection after the shift. The reverse shift of a reflected path
will also be a reflection, hence the shift is not invertible. We deal
with these issues by rejecting these offset paths (Section 5.1).

Step (iii): Reconnect If the current offset vertex and both the
current and next base vertex are classified as diffuse, we reconnect
to the base path by setting the incident direction at the current offset
vertex to point at the position of the next base vertex (Figure 10a,
step (iii)). The connection, however, may be occluded. This means
this offset path would never be sampled by the path tracer as a base
path (with an important exception, explained in the next paragraph).
Hence the base-offset pair is not symmetric according to our defini-
tion in Section 5.1, and we set the gradient weight to 1. Otherwise
we compute MIS weights as described in Section 5.1. After a suc-
cessful connection, the rest of the offset path coincides with the
remaining base path. Finally, if the next base vertex is a point light,
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Figure 10: a) Constructing the offset path (see text). b) An exam-
ple base/offset pair constructed by the shift mapping. As soon as
we encounter two consecutive diffuse vertices on the base path, we
connect the offset path to the second of the two.

we always connect to it. If we can never connect to a light source,
the image contribution of the offset path is zero.

We need to pay special attention when reconnecting to a base vertex
on an area light source. The path tracer has two techniques to sam-
ple emitter vertices, either using BSDF or area sampling. Hence
there are four instead of only two sampling strategies to compute
a path difference: the forward and inverse shift for the base-offset
pair, multiplied by the two strategies for sampling the emitter ver-
tex. We include all four strategies in our MIS weighting. As a final
subtlety, if the path tracer samples a base vertex on the emitter us-
ing area sampling, it may produce occluded paths. Consequently, in
this special case (in contrast to the previous paragraph) an occluded
connecting segment does not imply that the base-offset pair must
be non-symmetric. We must, however, treat all sampling strategies
consistently, hence we still apply the same rule as above, which
is to treat path-pairs that include any occlusion as non-symmetric.
This means we ignore the offset path, and weigh the base path with
conventional MIS for emitter sampling only.

We show an example base-offset pair generated by this shift in Fig-
ure 10b. The procedure implies that as soon as we encounter two
consecutive diffuse vertices on the base path, we connect the offset
path to the second of the two. Since the shift is a concatenation of
independent steps, each step adds a separate factor to the Jacobian
determinant. We give the results here and refer to the supplemental
material and Stam [2001] for details.

Jacobians The Jacobian for step (i) is unity. In step (ii), we need
to distinguish between reflection and refraction. Let us denote the
incident directions in the base path x̄ and shifted offset path ȳ by
ωx
i and ωy

i , and the projected half-vectors hx and hy . The outgoing
directions (towards the eye) in the base and offset paths are ωx

o and
ωy
o . The Jacobian determinant for reflection is∣∣∣∣∂ωy

i

∂ωx
i

∣∣∣∣ =

∣∣∣∣∂ωy
i

∂hy

∣∣∣∣ ∣∣∣∣∂hx

∂ωx
i

∣∣∣∣ =
ωy
o · hy

ωx
o · hx

, (11)

and the Jacobian determinant for refraction is

∣∣∣∣∂ωy
i

∂ωx
i

∣∣∣∣ =

∣∣∣∣∂ωy
i

∂hy

∣∣∣∣ ∣∣∣∣∂hx

∂ωx
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∣∣∣ωy
i +

n
y
2

n
y
1
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o

∣∣∣2∣∣∣ωx
i +

nx2
nx1
ωx
o

∣∣∣2
ωx
i · hx

ωy
i · hy

, (12)

where nx
1 and nx

2 are the refractive indices on the base path x̄, and
similarly for the offset path ȳ. For step (iii), which reconnects two
consecutive diffuse vertices, we denote the positions of the two ver-
tices on the base path as xx

1 and xx
2 , and the cosine of the angle

between surface normal and path segment between xx
1 and xx

2 as
θx2 . We use analogous notation for the offset path ȳ. The Jacobian
simply consists of the ratio of two geometry terms,∣∣∣∣∂ωy

i

∂ωx
i

∣∣∣∣ =

∣∣∣∣∂ωy
i

∂xy
2

∣∣∣∣ ∣∣∣∣∂xx
2

∂ωx
i

∣∣∣∣ =
cos θy2
cos θx2

|xx
1 − xx

2 |2

|xy
1 − xy

2 |
2 . (13)

Finally, observe that if the connecting vertex x2 on the base path
was sampled on an area light source, then the corresponding geom-
etry term cancels out with the geometry term cos θx2/ |xx

1 − xx
2 |2

of the base path here. The Jacobian determinant for connecting to
environment maps is one.

Analysis We study a simple 2D scene (Figure 11) to illustrate
why our shift leads to smaller-energy gradients compared to the
trivial alternative of always copying the incident direction (corre-
sponding to the simple shift in the analysis in Section 4). The scene
consists of walls and a ceiling made of colored emissive tiles, with
the camera looking at the floor (Figure 11a).

First we assume a diffuse ground plane. Figure 11b shows the path
throughput (incident radiance times cosine) parameterized over the
ground plane (x axis) and incident direction (p axis), which we de-
fine using the tangent of the angle of incidence. We form a base
path by connecting the camera to x1 (red square) on the ground and
the red dot on the ceiling. We visualize the base path as the red cir-
cle in (b) that lies on the line x1. We obtain the first segment of the
offset path by shifting the direction of the primary ray, resulting in
x2 (orange square). The simple shift copies the incident direction,
yielding the green secondary hit (respectively in (b), the green cir-
cle on line x2). In contrast, our shift connects the primary hit of the
offset x2 to the secondary hit of the base path (in (b), red circle on
line x2). In (b) we see how our shift attempts to follow the isophote
in path throughput by reconnecting to the original secondary hit.
The path difference function is the subtraction of the path through-
puts between the base and offset path, as determined by the shift
mapping, multiplied by the Jacobian determinant. We show this in
(d) for the simple shift, and in (e) for our shift (we visualize 0.5
+ signed difference). Our shift results in lower variance (0.002 vs.
0.046), which translates directly to better image quality according
to Equation 7.

Let us now assume the ground plane is a mirror. The corresponding
path throughput, a Dirac distribution over angle, is visualized in
(c). We show a base path connecting the camera, x1, and the blue
circle in the mirror direction. Copying the incident direction after
the shift (in (a) and (c), yellow circle connected to x2) breaks the
mirror geometry, and no light is carried by the offset path. Our half-
vector copying shift (in (a) and (c), brown dot connected to x2), on
the other hand, stays on the mirror manifold and results again in a
lower-variance path difference function.

6 Results and Discussion

We implemented G-PT on top of the standard path tracer in the open
source Mitsuba renderer. Our gradient path tracer shifts each base
path to its four vertical and horizontal neighbors, resulting in stan-
dard finite difference gradient estimates. This means we compute
four offset paths for each base path. Since our shift mapping typ-
ically connects offset paths back to base paths after tracing only a
few new offset path segments, the computational cost of offset paths
is significantly lower than for base paths. In practice, we observe
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Figure 11: Analysis of shift mappings. (a) A 2D scene consisting of
a ground plane, colored emissive tiles, and a camera pointing to the
floor. Camera rays ending at x1 are base paths, and the ones end-
ing at x2 are offset paths. (b) Assuming a diffuse ground plane, path
throughput f(x, p̄) visualized over the x coordinate on the ground
plane and incident direction p (tangent parameterization). The lo-
cations of the vertical lines (x0, x1, x2) correspond to the points in
(a). The colored circles correspond to rays in (a). The relationship
of the simple shift mapping (that copies incident direction) and our
shift mapping (that reconnects to the second base path vertex) is vi-
sualized by the arrows. The energy is ‖F‖2 = 0.06. (c) Assuming
a mirrored ground plane, the path throughput is a Dirac in angle.
Again, the base and offset paths are visualized for both the simple
shift and our shift. Our shift remains on the specular submanifold.
(d) The finite difference g(x, p̄) = f(x, p̄) − f(x − 1, p̄) for the
simple shift, computed from (b). The energy is ‖G‖2 = 0.046. (e)
The finite difference for our shift, computed from (b). The energy is
‖G‖2 = 0.002.

an overhead of about a factor 2.5 between our method with n base
and 4n offset samples per pixel compared to standard path tracing
with n samples per pixel. Slightly deviating from the pseudocode
in Algorithm 1, we also apply our MIS technique (Section 5.1) to
the samples of the image contribution function. For each base and
offset path, we write their MIS weighted image contribution to the

base and offset pixel, respectively. We found that this provides a
small additional error reduction.

We provide an overview of results and comparisons to standard path
tracing in Figure 12. The convergence plots on the right show the
relative mean square error (relMSE) of PT and G-PT as a func-
tion of render time. We compute per-pixel relMSE by summing
(img− ref)2/(grayscale(ref)2 + ε) over the color channels. We use
ε = 0.001 and report the average error over all pixels. The conver-
gence plots show that we achieve a relMSE reduction by a factor of
five to twelve, which is a render time advantage by the same factor
to obtain equal numerical error. Diffuse scenes like Sponza favor
G-PT the most, because the shift mapping always connects to the
second base vertex (excluding the eye) and BSDF values stay con-
stant under the shift. Scenes with many glossy surfaces like Kitchen
are more challenging because they lead to higher path differences
and noisier gradients, but G-PT still achieves a significant error re-
duction. The close-ups show results at equal number of base sam-
ples. Because of the 2.5 times overhead of G-PT, our images should
be compared to the next PT image diagonally down to the right for
an approximately equal time comparison (slightly skewed in favor
of PT, since PT has 4/2.5 = 1.6 times longer to compute these
images). The close-ups reveal how G-PT effectively reduces high
frequency noise without blurring texture detail or geometric edges,
which is most apparent in Sponza and Bookshelf. Even in scenes
that are notoriously hard to render for PT, like Door, G-PT provides
a significant advantage. It cannot, however, avoid artifacts and out-
liers due to the underlying unidirectional path sampling strategy.

We examine the influence of the L2 reconstruction parameter α
on the relMSE for our five scenes in Figure 13. We plot the error
reduction compared to conventional rendering at an equal number
of base samples, that is, conventional rendering with n samples is
compared to gradient-domain rendering with n base samples and
four horizontal and vertical offset samples (at equal render time our
advantage is about 2.5 times lower). These plots are the same for
different n. It is interesting to observe the correspondence to the
theoretical prediction in Figure 6. While the shapes of the curves
are remarkably similar, at the same values for the optimal α we ob-
tain about twice the error reduction in practice than predicted by the
theory. We explain this with the fact that we use four highly cor-
related gradient samples in practice (they all reuse the same base
path), whereas the theory assumes two gradient samples that are
uncorrelated to each other. For the same reason, the optimal α
parameter predicted by the theory usually overestimates α, which
means it gives too much weight to the primal image. In practice, we
prefer L1 reconstruction because it suppresses occasional outliers.
In addition, its quality is rather independent of α and a standard
setting of α = 0.2 leads to results that are indistinguishable from
the optimal value for all our scenes.

Finally, we compare gradient path tracing to gradient-domain
Metropolis sampling in Figure 14. The figure shows typical non-
uniform convergence behavior of MLT, while G-PT performs sim-
ilarly well. This figure demonstrates that G-PT can take advantage
of gradients similarly effectively as G-MLT in scenes where the un-
derlying path sampler performs reasonably well.

7 Conclusions

We have presented gradient-domain path tracing, a simple variation
of standard path tracing that leverages correlated path samples to
estimate finite pixel differences. We provided a theoretical analy-
sis of this approach that sheds light on the benefits and limitations
of such an approach. We find that for typical image contribution
functions, which are dominated by low frequency energy like natu-
ral images, taking finite differences between close-by paths in path
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Figure 12: We compare conventional path tracing (PT) to gradient-domain path tracing (G-PT) on five scenes. Convergence plots on the
right show the relative mean squared error (relMSE) as a function of rendering time. G-PT reduces relMSE by a factor of five to ten at equal
time. Counting only base path samples, G-PT has a performance overhead of a factor 2.5 to compute four offset paths. Hence the close-ups
of G-PT (with L1 reconstruction) should be compared to PT diagonally down to the right for an approximately equal time comparison,
although PT takes 4/2.5 = 1.6 times longer to render the corresponding images. G-PT effectively reduces high frequency noise without
blurring details.

space removes much of the energy from the signal. This leads to
lower variances in the sampled estimates, which we exploit in a
Poisson reconstruction step. Relying on pixel differences only to
reconstruct an image amounts to inverting the finite differencing
operator. This works well for high frequencies, but it cannot re-
cover low frequency information. By combining gradient infor-
mation with conventionally sampled pixels, however, we obtain a
result that preserves the low frequencies of the conventional image
and takes advantage of the lower variance in the sampled gradients
to suppress high frequency noise.

We put these insights into practice by developing a gradient-domain
path tracer. We developed a novel shift mapping that is simple to
compute and effective at producing highly correlated path pairs. In

addition, we introduced a multiple importance sampling technique
that suppresses gradient outliers that can be introduced when the
shift mapping introduces large distortions in path space. Our ap-
proach provides significant improvements over standard path trac-
ing at equal render time, reducing squared error by up to an order
of magnitude.

Our approach builds on the simplicity of standard unidirectional
path tracing, but it is also limited by its inability to robustly sample
light paths in difficult scenarios. Most importantly, we believe our
study reveals the opportunities that gradient-domain rendering will
provide for other Monte Carlo sampling strategies. In the future, we
will explore gradient-domain bidirectional path tracing and related
approaches. In addition, our results open up research challenges re-
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Figure 13: Relative MSE (relMSE) of path tracing over relMSE of
gradient-domain path tracing at the same number of base samples,
and for different values α. Lower optimal α values indicate lower
variance in the sampled gradients, and they correspond to better
error reduction. Note the correspondence to Figure 5.
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Figure 14: Comparing the characteristics of the error between
gradient-domain MLT, gradient-domain path tracing, and regular
path tracing. At the top we visualize the error of G-MLT, G-PT,
and PT to a reference image of the Kitchen scene, and we show
equal-time convergence plots at the bottom.

lated to various aspects of gradient-domain Monte Carlo rendering,
including the development of more advanced shift mappings, cus-
tom tailored shift mappings for specific effects or materials, adap-
tive sampling, and so on.
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JAROSZ, W., SCHÖNEFELD, V., KOBBELT, L., AND JENSEN,
H. W. 2012. Theory, analysis and applications of 2D global
illumination. ACM Trans. Graph. 31, 5 (Sept.), 125:1–125:21.

To appear in ACM Transactions on Graphics (Proc. SIGGRAPH 2015)



KAJIYA, J. T. 1986. The rendering equation. In Proc. ACM SIG-
GRAPH 86, 143–150.

KAPLANYAN, A. S., HANIKA, J., AND DACHSBACHER, C. 2014.
The natural-constraint representation of the path space for effi-
cient light transport simulation. ACM Trans. Graph. 33, 4.

KELEMEN, C., SZIRMAY-KALOS, L., ANTAL, G., AND
CSONKA, F. 2002. A simple and robust mutation strategy for the
Metropolis light transport algorithm. Computer Graphics Forum
21, 3, 531–540.
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