Gradient-Domain Metropolis Light Transport

Jaakko Lehtinen

NVIDIA Aalto University Tero Karras NVIDIA

Frédo Durand MIT CSAIL

Samuli Laine NVIDIA

Miika Aittala

NVIDIA Aalto University

Timo Aila NVIDIA

Aalto University School of Science

Image Processing 101

Image Processing 101

Image Processing 101

Image Processing 101: Horizontal difference

ß

dI/dx = I(x+1,y)-I(x,y)

Image Processing 101: Vertical difference

dI/dy = I(x,y+1)-I(x,y)

Classic Observation: Derivatives are Sparse

Classic Observation: Derivatives are Sparse

Derivatives fire where the action is

Yet they contain the same information as the actual image

Can we render derivatives directly?

If so, can we compute less in smooth areas?

Indirect Illumination

Goal Sample Distribution

Horizontal Difference

Vertical Difference

Horizontal Difference

Vertical Difference

Poisson Solver

Horizontal Difference

Vertical Difference

Poisson Solver

Final Image

Vertical Difference

"Fundamental Theorem of Calculus"

"Fundamental Theorem of Calculus"

Path Sampling Light Transport

- Most traditional rendering algorithms fire rays through each pixel
- path tracing, etc.
- determine intensity by averaging many samples (MC sampling) - sample all possible paths light can take from source to sensor

Not useful for finding derivatives

Construct a Markov Chain of light paths

- start from a random path
- mutate with a carefully chosen probability

- repeat

Count number of paths that landed in each pixel

Tends to direct computation to paths where lots of light flows...

Tends to direct computation to paths where lots of light flows... ...without knowing where in advance!

Gradient-Domain MLT Intuition

Gradient-Domain MLT Intuition

We concentrate sampling on paths where light flow changes.

x = position on receiver, y = position on light

2D Path Space

x = position on receiver, y = position on light

2D Path Space

x = position on receiver, y = position on light

2D Path Space

Each path is a point in path space

Path throughput function f carries radiance, except it is zero for blocked paths

2D Path Space

 X_{24}

Path throughput function f carries radiance, except it is zero for blocked paths

2D Path Space

 X_{25}

Shadowed Result is Integral Along Columns

Shadowed Result is Integral Along Columns

Full Shadow

27

Penumbra

Fully Lit

Samples distributed according to magnitude of f

Metropolis Light Transport

Samples distributed according to magnitude of f

Metropolis Light Transport

Hmm.. Lots of Samples Where Nothing Happens

Metropolis Sample Distribution

tion Rendering result

Hmm.. Lots of Samples Where Nothing Happens

Metropolis Sample Distribution

tion Rendering result

Hmm.. Lots of Samples Where Nothing Happens

Metropolis Sample Distribution

tion Rendering result

Let's make each sample measure the difference in the integrand across one pixel

Think image gradients

Path Space Finite Differences

 X_{34}

Path Space Finite Differences

 X_{34}

Path Space Finite Differences

 χ_{35}

Both paths unblocked, difference is zero

Path Space **Finite Differences**

 χ_{35}

Both paths unblocked, difference is zero

Path Space Finite Differences

 χ_{36}

One path blocked, abs(difference)=1

Path Space **Finite Differences**

 χ_{37}

Each sample is a pair of paths

- Each sample is a pair of paths
- We drive Metropolis by the **difference in path throughput**
- Result: many of samples where stuff happens

- Random process walks along regions of change in path space

- Each sample is a pair of paths
- We drive Metropolis by the **difference in path throughput** - Random process walks along regions of change in path space - Result: many of samples where stuff happens
- Small detail: We also mix in a little of "primal" path throughput - So we get some samples everywhere

Gradient-Domain Sampling Result

Gradient-Domain Sampling Result

Many samples along shadow boundary

Gradient-Domain Sampling Result

Many samples along shadow boundary

Some samples in lit region (so we get an idea of its magnitude)

Gradient-Domain MLT

Result: three images, all unbiased — horizontal and vertical pixel differences (gradient) - "primal" path throughput (noisy version of image)

When done: count positive and negative contributions in each pixel

Gradient-Domain MLT Final Step

- Coarse image helps low frequencies — With standard L_2 solver, final image is unbiased

- Integrate gradient by solving screened Poisson equation [Bhat09]
- In practice, use more robust L₁ solver instead of usual L₂ [LevinO4]

Questions

Real light paths have more than two segments — How to construct the "offset path"?

Is the result the actual finite difference?— Subtlety involved

take green "base path", shift one pixel, shoot new primary ray

take green "base path", shift one pixel, shoot new primary ray

take green "base path", shift one pixel, shoot new primary ray connect new primary hit • to old secondary hit •

take green "base path", shift one pixel, shoot new primary ray connect new primary hit • to old secondary hit • done!

non-specular

non-specular

Only one direction for transmitted ray to go!

Only one direction for transmitted ray to go!

Can't Connect to Old Secondary Hit

Only one direction for transmitted ray to go!

Must Perturb Specular Chain Until

non-specular

Must Perturb Specular Chain Until

Complex, but can reuse **Manifold Perturbation** [Jakob12]

Find *x*

Wade Clarke 2005

Correct Differences?

We have to account between different path space measures between primary and offset paths by a path-space Jacobian

Ground truth

With Jacobian Without Jacobian

Path-Space Jacobian

Path-Space Jacobian

$$\begin{vmatrix} \frac{\partial \tilde{\mathbf{x}}_{i}}{\partial \mathbf{x}_{j}} \end{vmatrix}_{ij} = \begin{vmatrix} \frac{\partial \tilde{\mathbf{x}}_{i}}{\partial \tilde{\mathbf{O}}_{k}} \frac{\partial \tilde{\mathbf{O}}_{l}}{\partial \mathbf{O}_{l}} \frac{\partial \mathbf{O}_{l}}{\partial \mathbf{x}_{j}} \end{vmatrix}_{ij} = \begin{vmatrix} \frac{\partial \tilde{\mathbf{x}}_{i}}{\partial \tilde{\mathbf{O}}_{k}} \end{vmatrix}_{ik} \begin{vmatrix} \frac{\partial \tilde{\mathbf{O}}_{k}}{\partial \mathbf{O}_{l}} \end{vmatrix}_{kl} \begin{vmatrix} \frac{\partial \mathbf{O}_{l}}{\partial \mathbf{x}_{j}} \end{vmatrix}_{lj}$$

$$\frac{\partial \omega}{\partial \mathbf{x}_{j}} = \begin{vmatrix} \frac{\partial \tilde{\mathbf{x}}_{i}}{\partial \mathbf{O}_{k}} \end{vmatrix}_{ij} = \begin{vmatrix} \frac{\partial \tilde{\mathbf{x}}_{i}}{\partial \tilde{\mathbf{O}}_{k}} \end{vmatrix}_{ik} \begin{vmatrix} \frac{\partial \tilde{\mathbf{O}}_{k}}{\partial \mathbf{O}_{l}} \end{vmatrix}_{kl} \begin{vmatrix} \frac{\partial \mathbf{O}_{l}}{\partial \mathbf{x}_{j}} \end{vmatrix}_{lj}$$

$$\frac{\partial \omega}{\partial \mathbf{x}_{j}} = \partial \mathbf{s} \cos^{2} \frac{\partial \omega}{\partial \mathbf{x}_{$$

$$\frac{\mathrm{d}\mu(T(\bar{x}))}{\mathrm{d}\mu(\bar{x})} = \left| \frac{\partial \tilde{\mathbf{x}}_i}{\partial \mathbf{x}_j} \right|_{ij}, \quad i, j = 1,$$

 $\frac{\partial \mathbf{x}_b}{\partial \mathbf{s}} = \frac{\partial \mathbf{x}_b}{\partial \mathbf{x}_1} \frac{\partial \mathbf{x}_1}{\partial \mathbf{s}} = \frac{\partial \mathbf{x}_b}{\partial \omega_0^{\perp}} \frac{\partial \omega_0^{\perp}}{\partial \mathbf{x}_1} \frac{\partial \mathbf{x}_1}{\partial \mathbf{s}}$ $= \frac{G(\mathbf{x}_0 \leftrightarrow \mathbf{x})}{G(\mathbf{x}_0 \leftrightarrow \ldots \leftrightarrow \mathbf{x})}$

 $\frac{\partial \tilde{\mathbf{x}}_1}{\partial \mathbf{s}} \left(\frac{\partial \mathbf{x}_1}{\partial \mathbf{s}} \right)^{-1} = \frac{\left\| \tilde{\mathbf{x}}_1 - \tilde{\mathbf{x}}_0 \right\|^2 \cos \theta_1 \cos^3}{\left\| \mathbf{x}_1 - \mathbf{x}_0 \right\|^2 \cos \tilde{\theta}_1 \cos^3}$

$$\left| \frac{\partial \tilde{\mathbf{x}}_{i}}{\partial \mathbf{x}_{j}} \right|_{ij} = \left| \frac{\partial \tilde{\mathbf{x}}_{i}}{\partial \tilde{\mathbf{O}}_{k}} \right|_{ik} \left| \frac{\partial \tilde{\mathbf{x}}_{b}}{\partial \mathbf{s}} \frac{\partial \mathbf{s}}{\partial \mathbf{x}_{b}} \right| \left| \frac{\partial \mathbf{O}_{l}}{\partial \mathbf{x}_{j}} \right|_{lj}$$

$$\underline{\mathbf{x}_{1}}_{ij} = \left(\left| \frac{\partial \tilde{\mathbf{x}}_{b}}{\partial \mathbf{s}} \right| \left| \frac{\partial \tilde{\mathbf{x}}_{i}}{\partial \tilde{\mathbf{O}}_{k}} \right|_{ik} \right) \left(\left| \frac{\partial \mathbf{x}_{b}}{\partial \mathbf{s}} \right| \left| \frac{\partial \mathbf{x}_{j}}{\partial \mathbf{O}_{l}} \right|_{jl} \right)^{-1}$$

$$\frac{\partial \tilde{\theta}_{0}}{\partial \theta_{0}} \qquad \frac{\partial \mathbf{x}_{1}}{\partial \mathbf{s}} = \frac{\|\mathbf{x}_{1} - \mathbf{x}_{0}\|^{2} \cos^{3} \theta_{0}}{\cos \theta_{1}} \qquad \frac{\mathsf{P} \, \mathsf{A} \, \mathsf{B} \, \mathsf{E}}{\mathsf{A} \, \mathsf{D} \, \mathsf{VI}}$$

Does It Work?

Implementation in Mitsuba [Jakob]

Comparison to previous unbiased algorithms — Veach MLT, Kelemen MLT, ERPT, Bidirectional Path Tracing

Showing uncoverged images to highlight differences

Indirect Only

MLT Sample Density

Gradient MLT Sample Density

Sample Density

Path space gradients are not the same as image gradients

Still, sample density higher on edges

- Multiple positive and negative gradients within pixel can cancel out

Difficult transport through windows

Veach MLT (32.4 dB)

Our result (34.2 dB)

59

Highly Complex Indirect Transport

1

Aittala feat. Laine, after Veach

Bidirectional Path Tracing, 20min 22.3 dB

Kelemen Metropolis, 20min 23.9 dB

Veach Metropolis, 20min 34.2 dB

Gradient MLT (our), 20min 37.8 dB

Difficult Specular Transport

ERPT [Cline05], 5min, 28.9dB

Veach MLT, 5min, 29.8dB

Gradient MLT (our), 5min, 29.8dB

Gradient MLT (our), 5min, 29.8dB

Gradient MLT works also for very difficult transport No large differences between Metropolis algorithms Gradient MLT artifacts have a different visual characteristic

Why is Gradient Sampling Beneficial?

Gradients contain way less energy than actual image - I.e., more succinct representation

- But they are harder to sample, partially canceling benefit

Still **net win** in our test cases

Screened Poisson Analysis

Image is reconstructed from gradients and a coarse primal image - L2 reconstruction is unbiased

Fourier analysis shows the **solver takes low frequencies** Cutoff frequency controlled by weighting

Explicit details in paper

from primal image, high frequencies from integrated gradients

Screened Poisson Solver, high gradient weight

Result

Low freq. (primal)

High freq. (gradients)

Screened Poisson Solver, small gradient weight

Low freq. (primal)

High freq. (gradients)

Limitations and Future Work

- MLT algorithms have trouble finding all light transport "modes"
- Results in uneven, "clunky" converge
- Our algorithm shares this problem
- Can we do something about it?

We use only mutators designed for regular MLT - Interesting to see if we can specialize for gradients

Conclusion

Fundamentally novel unbiased sampling for light transport? Drives computation towards "where things happen"

Conclusion

Fundamentally novel unbiased sampling for light transport? Drives computation towards "where things happen"

Interesting connections to adaptive sampling, such as MDAS [Hachisuka08] and others

- Both algorithms concentrate samples on boundaries in path space

Thank You!

Acknowledgments Wenzel Jakob for Mitsuba HeCSE Graduate School, MIDE/UI-ART/Aalto University NSF CGV 1116303 David Luebke Anonymous reviewers for constructive and thorough feedback

Aalto University School of Science

