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Image Processing 101: Horizontal difference

dI/dx = I(x+1,y)-I(x,y)
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Image Processing 101: Vertical difference

dI/dy = I(x,y+1)-I(x,y)
4



Classic Observation:
Derivatives are Sparse
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Classic Observation:
Derivatives are Sparse

Derivatives fire where the action is

Yet they contain the same information as the actual image
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Can we render derivatives directly?

If so, can we compute less in smooth areas?
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Indirect Illumination



Goal Sample Distribution



Desired Algorithm Overview
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Desired Algorithm Overview
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Vertical Difference
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Desired Algorithm Overview

Horizontal Difference

Vertical Difference
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Poisson Solver Final Image?
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Path Sampling Light Transport

Most traditional rendering algorithms fire rays through each pixel
—path tracing, etc.
—determine intensity by averaging many samples (MC sampling)
—sample all possible paths light can take from source to sensor

Not useful for finding derivatives
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Metropolis Light Transport (MLT) [Veach97]
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Metropolis Light Transport (MLT) [Veach97]

Construct a Markov Chain of light paths
—start from a random path
—mutate with a carefully chosen probability
—repeat

Count number of paths that landed in each pixel
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Metropolis Light Transport (MLT) [Veach97]

Tends to direct computation to paths where lots of light flows..
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Metropolis Light Transport (MLT) [Veach97]

Tends to direct computation to paths where lots of light flows..
..without knowing where in advance!
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Gradient-Domain MLT Intuition
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Gradient-Domain MLT Intuition

We concentrate sampling on paths where light flow changes.
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Simple 2D Example
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Simple 2D Example
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Simple 2D Example
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Simple 2D Example
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 2D Path Space
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x = position on receiver,
y = position on light
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 2D Path Space

23

x = position on receiver,
y = position on light

Each path is a point in path space



 2D Path Space

Path throughput function f
carries radiance, except

it is zero for blocked paths
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2D Path Space

Path throughput function f
carries radiance, except

it is zero for blocked paths
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Shadowed Result is Integral Along Columns

∫
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Shadowed Result is Integral Along Columns

∫ =
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Full Shadow
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Penumbra
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Fully Lit
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Metropolis
Light Transport

Samples distributed
according to magnitude of f
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Metropolis
Light Transport

Samples distributed
according to magnitude of f
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Hmm.. Lots of Samples Where Nothing Happens

Metropolis Sample Distribution Rendering result
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Hmm.. Lots of Samples Where Nothing Happens

Metropolis Sample Distribution Rendering result
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Hmm.. Lots of Samples Where Nothing Happens

Metropolis Sample Distribution Rendering result
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Key Idea

Let’s make each sample measure
the difference in the integrand across one pixel

Think image gradients
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Path Space
Finite Differences
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Path Space
Finite Differences
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Path Space
Finite Differences
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Path Space
Finite Differences

Both paths unblocked,
difference is zero
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Path Space
Finite Differences

Both paths unblocked,
difference is zero
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Path Space
Finite Differences

One path blocked,
abs(difference)=1
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Gradient-Domain Metropolis Sampling
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Gradient-Domain Metropolis Sampling

Each sample is a pair of paths
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Gradient-Domain Metropolis Sampling

Each sample is a pair of paths

We drive Metropolis by the difference in path throughput
—Random process walks along regions of change in path space
—Result: many of samples where stuff happens
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Gradient-Domain Metropolis Sampling

Each sample is a pair of paths

We drive Metropolis by the difference in path throughput
—Random process walks along regions of change in path space
—Result: many of samples where stuff happens

Small detail: We also mix in a little of “primal” path throughput
—So we get some samples everywhere
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Gradient-Domain Sampling Result
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Gradient-Domain Sampling Result

Many samples along
shadow boundary
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Gradient-Domain Sampling Result

Many samples along
shadow boundary

Some samples in lit region
(so we get an idea of its 

magnitude)
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Gradient-Domain MLT

When done: count positive and negative contributions in each pixel

Result: three images, all unbiased
—horizontal and vertical pixel differences (gradient)
—“primal” path throughput (noisy version of image)
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Gradient-Domain MLT Final Step

Integrate gradient by solving screened Poisson equation [Bhat09]
—Coarse image helps low frequencies
—With standard L2 solver, final image is unbiased
—In practice, use more robust L1 solver instead of usual L2 [Levin04]
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Questions

Real light paths have more than two segments
—How to construct the “offset path”?

Is the result the actual finite difference?
—Subtlety involved
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Offset Path, Simple Case
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take green “base path”, shift one pixel, shoot new primary ray

Offset Path, Simple Case
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take green “base path”, shift one pixel, shoot new primary ray

Offset Path, Simple Case
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take green “base path”, shift one pixel, shoot new primary ray
connect new primary hit     to old secondary hit

Offset Path, Simple Case
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take green “base path”, shift one pixel, shoot new primary ray
connect new primary hit     to old secondary hit
done!

Offset Path, Simple Case
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Specularity is More Complex
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Specularity is More Complex
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Specularity is More Complex

45

Only one direction for
transmitted ray to go!



Specularity is More Complex

45

Only one direction for
transmitted ray to go!



Can’t Connect to Old Secondary Hit
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Only one direction for
transmitted ray to go!



Must Perturb Specular Chain Until 
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Must Perturb Specular Chain Until 

Complex, but can reuse 
Manifold Perturbation

[Jakob12]
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Find x
48

Wade Clarke 2005



Correct Differences?

We have to account between different
path space measures between primary and offset
paths by a path-space Jacobian
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Path-Space Jacobian
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Path-Space Jacobian
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Does It Work?

Implementation in Mitsuba [Jakob]

Comparison to previous unbiased algorithms
—Veach MLT, Kelemen MLT, ERPT, Bidirectional Path Tracing

Showing uncoverged images to highlight differences

52



53



 b

Indirect Only
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MLT Sample Density
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Gradient MLT Sample Density
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Sample Density

Path space gradients are not the same as image gradients
—Multiple positive and negative gradients within pixel can cancel out

Still, sample density higher on edges
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Difficult transport through windows
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Our result (34.2 dB)
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Veach MLT (32.4 dB)



Highly Complex Indirect Transport

Aittala feat. Laine, after Veach 60



Bidirectional Path Tracing, 20min
22.3 dB
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Kelemen Metropolis, 20min
23.9 dB
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Veach Metropolis, 20min
34.2 dB
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Gradient MLT (our), 20min
37.8 dB
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Difficult Specular Transport
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ERPT [Cline05], 5min,
28.9dB
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Veach MLT, 5min,
29.8dB
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Gradient MLT (our), 5min,
29.8dB
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Gradient MLT (our), 5min,
29.8dB

Gradient MLT works also for very difficult transport
—No large differences between Metropolis algorithms
—Gradient MLT artifacts have

a different visual characteristic
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Why is Gradient Sampling Beneficial?

Gradients contain way less energy than actual image
—I.e., more succinct representation
—But they are harder to sample, partially canceling benefit

Still net win in our test cases
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Screened Poisson Analysis

Image is reconstructed from gradients and a coarse primal image
—L2 reconstruction is unbiased

Fourier analysis shows the solver takes low frequencies
from primal image, high frequencies from integrated gradients
—Cutoff frequency controlled by weighting

Explicit details in paper
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Screened Poisson Solver, high gradient weight

= +

Result Low freq. (primal) High freq. (gradients)
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Screened Poisson Solver, small gradient weight

= +

Result Low freq. (primal) High freq. (gradients)
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Limitations and Future Work

MLT algorithms have trouble finding all light transport “modes”
—Results in uneven, “clunky” converge
—Our algorithm shares this problem
—Can we do something about it?

We use only mutators designed for regular MLT
—Interesting to see if we can specialize for gradients
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Conclusion

Fundamentally novel unbiased sampling for light transport?
—Drives computation towards “where things happen”
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Conclusion

Fundamentally novel unbiased sampling for light transport?
—Drives computation towards “where things happen”

Interesting connections to adaptive sampling,
such as MDAS [Hachisuka08] and others
—Both algorithms concentrate samples on boundaries in path space
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