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Figure 1: Our algorithm can handle complex balancing and manipulation tasks while adapting to user interactions. All our demonstrated
movements emerge from simple cost functions without animation data or offline precomputation. More examples can be found in the supple-
mental video and on the project homepage.

Abstract

We present a novel, general-purpose Model-Predictive Control
(MPC) algorithm that we call Control Particle Belief Propagation
(C-PBP). C-PBP combines multimodal, gradient-free sampling and
a Markov Random Field factorization to effectively perform simul-
taneous path finding and smoothing in high-dimensional spaces.
We demonstrate the method in online synthesis of interactive and
physically valid humanoid movements, including balancing, recov-
ery from both small and extreme disturbances, reaching, balancing
on a ball, juggling a ball, and fully steerable locomotion in an en-
vironment with obstacles. Such a large repertoire of movements
has not been demonstrated before at interactive frame rates, espe-
cially considering that all our movement emerges from simple cost
functions. Furthermore, we abstain from using any precomputation
to train a control policy offline, reference data such as motion cap-
ture clips, or state machines that break the movements down into
more manageable subtasks. Operating under these conditions en-
ables rapid and convenient iteration when designing the cost func-
tions.
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1 Introduction

Research on procedural, physically based humanoid movement
synthesis has attracted considerable attention, due to its promise
of transforming the animator or game designer into a choreogra-
pher that directs the characters using high-level commands instead
of laboriously editing animation frame-by-frame. As shown by the
seminal work of Witkin and Kass [1988], physically based motion
synthesis can be formulated as an optimization problem, yielding
plausible movement with desirable qualities such as ”squash-and-
stretch” and anticipation. The field has since progressed from sim-
ple characters with a few rigid bodies towards humanoid models
of increasing biomechanical detail, from offline to real-time sim-
ulation, and from purely optimization-based synthesis to utilizing
libraries of motion capture and animation data. Detailed reviews of
the state-of-the-art can be found in [Geijtenbeek and Pronost 2012;
Guo et al. 2014; Pejsa and Pandzic 2010]. Although complex move-
ments like bipedal locomotion can now be simulated in real-time,
challenges remain in making the characters autonomously adapt to
unpredictable environments, such as obstacles to foot placement
and sudden changes in direction when steered interactively.

In this paper, we set us the challenge of avoiding the following ap-
proaches that most physically based real-time systems rely on: 1)
using pre-scripted or recorded data such as motion capture clips,
2) employing offline precomputation to learn a control policy, or
3) designing specialized state machines that break down movement
into more manageable parts, e.g., defining the recovery of balance
as first lifting a foot, and then placing the foot down in a prescripted
direction. All the approaches require significant offline effort and/or
result in less robust real-time behavior in novel situations. Instead,
we utilize the power of our online optimization algorithm to make
adaptive real-time behavior emerge from simple cost functions.

Our work utilizes the fact that current personal computers can
simulate rigid body dynamics hundreds of times faster than real-
time. This has presented an opportunity for a new class of Model-
Predictive Control (MPC) methods that use black-box dynamics
simulators such as Open Dynamics Engine to simulate a controlled
system forward at each control update up to a planning horizon
of a few seconds. The approach has been gaining popularity in
both animation and robotics research, and has been demonstrated
to work with simulated humanoids and the requirements above
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[Hämäläinen et al. 2014; Tassa et al. 2014], although only a lim-
ited variety of behavior has been demonstrated so far.

In this paper, we introduce a novel forward-simulating MPC
method based on Particle Belief Propagation, a generic sampling-
based belief propagation method [Ihler and Mcallester 2009]. Com-
pared to the state-of-the-art of local optimization [Tassa et al. 2012;
Tassa et al. 2014; Toussaint 2009], our method is robust to cost
function discontinuities and multimodality. On the other hand,
related sampling methods employ some form of particle filtering
(a.k.a. Sequential Monte Carlo) [Hämäläinen et al. 2014; Stahl and
Hauth 2011], which has in some other domains been superseded
by belief propagation [Sudderth et al. 2010]. Sampling-based be-
lief propagation allows effective factorization of high-dimensional
problems, and has not been previously applied to the control of sim-
ulated humanoids. A detailed comparison to previous work is given
in Section 3.

We demonstrate our method in near real-time (20-30fps) control of
a simulated humanoid character with 30 actuated degrees of free-
dom (DOF) and 6 unactuated root DOFs. As shown in Figure 1 and
on the supplemental video, our system is capable of a wide range of
robust and adaptive behavior. For example, the character automati-
cally takes steps and shuffles feet to reach a target, places a hand on
a wall or ground to recover balance, and catches a ball with a differ-
ent limb if being disturbed while juggling. Our work advances the
state-of-the-art considering 1) the variety of the adaptive behavior,
and 2) the demonstration of novel, complex behavior such as bal-
ancing and reaching on top of a ball, and interactive, steerable lo-
comotion with the capability of climbing over obstacles. The main
limitations are that our sampling method produces some movement
noise, and we use a simulation model with simple joint actuators
instead of more detailed muscle and tendon models. Qualitywise,
we do not aim to compete with state-of-the-art offline or data-based
methods such as [Wampler et al. 2014; Mordatch et al. 2012; Gei-
jtenbeek et al. 2013]. Similar to [Hämäläinen et al. 2014], our con-
tribution is more in interactivity, i.e., in allowing a control designer
to rapidly test a wide range of objective functions and interactions
without time-consuming data gathering or offline computation.

2 Method

We first give a brief overview of our method, illustrated in Figure
2. Our algorithm works by doing path finding and smoothing in
time, and then transmitting between animation or game frames the
information that is generated in the process. This comprises the
following main phases:

• Explore the time evolution of the system forward up to a plan-
ning horizonK usingN guided random walkers. In other words,
we sample control vectors and use dynamics simulation to ob-
tain the corresponding next states for N trajectories. This corre-
sponds to Figure 2A.

• Smooth the optimal control obtained in the previous phase by
recursive backwards local refinement. This is shown in Figure
2B.

• Deploy the obtained control to the system and transmit infor-
mation of the hypothesized time evolution to the next frame or
iteration. The result of the algorithm performed with this prior
data is seen in Figure 2C.

A cost function is evaluated for each forward simulation step and
each trajectory. If many of the trajectories have a high total evalu-
ated cost, we perform a resampling step, marked with vertical blue
lines in Figure 2A. The resampling redistributes the computing re-

Figure 2: Our method illustrated in a case where the controlled
object moves from left to right at a constant velocity (i.e., k de-
notes both time and horizontal position), vertical acceleration is
controlled, and the green circle denotes the target. Figure A shows
the trajectories sampled during the forward pass. The vertical blue
lines indicate time instants of resampling. In Figure B the black line
indicates the optimal trajectory found in the forward pass and the
blue line indicates the results of a backwards local refinement pass.
Figure C shows the trajectories sampled by our method in the next
iteration, using the previous trajectories as a prior.

sources by pruning the less likely (high cost) trajectories and fork-
ing the most likely ones.

The forward and backward passes constitute a single iteration of
the algorithm. The trajectories of the previous iteration are used to
guide the random walkers of the next iteration. In online control,
we run one iteration per frame, assuming that the simulated system
exhibits only small changes between frames.

2.1 Notational conventions

Let us denote by n the frame of an animation or a game. Inside a
frame n, we can hypothesize about the time evolution of the system
forward with different controls and system dynamics. We denote
the time instant difference from the given frame by index k. Now,
we can denote by ak,n a quantity a at time k + n as seen from the
frame n. Thus, k < 0 refers to the past time. The time instants
k > 0 are hypotheses about the future and k = 0 refers to the given
frame.

If the quantity a has only one lower index, e.g. ak, it is used to
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refer to the time difference k from the ”current” frame. If we have a
group of samples of quantity a indexed by i, we will denote them by
a(i). As an example, a(2)

3,1 denotes the sample number 2 of a at time
instant 4 = 3 + 1 as seen in frame 1. In a context where the frame
information is irrelevant we could simply use a(2)

3 . As samples may
represent values of continuous trajectories, we also use a notation
a

(h(i,k,−δ))
k , where h(i, k,−δ) = j is a history function that maps

the sample index i at k to the corresponding sample index j of
the same trajectory at k − δ. This slightly cumbersome notation
is needed as the resampling operations remap the indices between
steps.

2.2 Online control

In many control systems the system model is of the form:

xt = ft(xt−1, ut) + ξ (1)
ξ ∼ N (0,Q). (2)

In this discrete time model xt represents the system state and ut
represents a control signal at time t. The state transition function
ft tells how the system evolves at time t. The process has zero
mean Gaussian noise that is denoted by ξ. Q stands for the noise’s
covariance matrix.

To make any claims about the optimality of a control-policy one
has to define cost for the system state and control. Let us denote the
state and control dependent cost at time instant t by `t(xt, ut). In
this article we assume the cost to be a positive valued function and
to contain separate state and control cost terms:

`t(xt, ut) = st(xt) + ct(ut). (3)

For an arbitrary cost function and arbitrary system dynamics, the
computation of the optimal control that minimizes cost is often in-
tractable. The complex, changing contacts of simulated humanoids
in particular make the transition function highly nonlinear and dis-
continuous, and a closed-form expression for the transition function
may not be available. In the following, we limit ourselves to eval-
uating ft(xt−1, ut) pointwise by running a forward dynamics sim-
ulation step with starting state xt−1 and control ut. We use Open
Dynamics Engine as our simulator.

Throughout sections 2.3-2.5, we will make use of the toy exam-
ple of Figure 2 to explain our method. In the toy example, ut is
scalar and simply denotes the vertical acceleration at time t. The
state xt ∈ R2 includes vertical position and velocity. Collisions
and gravity are disabled, and collisions only have effect through
st(xt) which is proportional to squared obstacle penetration depth
and vertical distance from target. The control cost favors small ac-
celerations, ct(ut) ∝ ‖ut‖2. Our 3D biped is more complex and
operates under collisions and gravity, as explained in Section 4.

2.3 Control as Markov Random Field

Let zk = [xk uk]T denote the combined state and control vector
at forward prediction step k. We turn the cost minimization into
finding the maximum of the probability density P(z) of the full
trajectories z = [z0, ..., zK ], where K denotes the planning hori-
zon. This is approached through 1) transforming cost functions into
probability densities through exponentiation (e.g., [Todorov 2008]),
and 2) approximate sampling fromP(z), which is likely to produce
samples at the density peaks.

If one only considers the state and control costs, one can define
P(z) as

P(z) =
1

Z

∏
k

exp
[
− 1

2

(
sk(xk) + ck(uk)

)]
=

∏
k

αk(xk)βk(uk)

=
∏
k

ψk(zk), (4)

where Z is a normalization term, and αk and βk denote state and
control potential functions that have their maxima at zero costs.
ψk(zk) is a shorthand for the combined state and control poten-
tial. The potentials are Gaussian if the costs are quadratic, but as
explained in section 5, for a simulated biped the state cost may
depend on contacts and can thus be discontinuous and multimodal.
An example of such discontinuity is a damage cost for the character
hitting the ground with its head.

Equation (4) implicitly assumes that the zk always form a valid
trajectory in the combined state and control space. However, con-
sidering the zk as separate random variables, we must augment the
equation with the probabilities of each zk actually connecting with
the adjacent zk−1 and zk+1:

P(z) =
1

Z

(∏
k

ψk(zk)
)

( K∏
k=1

Ψfwd(zk−1, zk)
)(K−1∏

k=0

Ψbwd(zk+1, zk)
)
,(5)

where Ψfwd and Ψbwd denote forward and backward transition po-
tentials, defined using Equation (1) as

Ψfwd(zk−1, zk) = Ψbwd(zk, zk−1)

= N (xk; fk(xk−1, uk),Q), (6)

whereN (x;µ,C) = exp[− 1
2
(x−µ)TC−1(x−µ)], i.e., an unnor-

malized Gaussian function of x with mean µ and covariance matrix
C. We omit the usual Gaussian normalization terms as they can be
included in the Z, and later on we need to evaluate the potentials
also in the limit when Q = 0. Now, limQ→0 Ψfwd(zk−1, zk) =
1, xk = fk(xk−1, uk), and zero otherwise.

Equation (5) corresponds to a simple case of a Markov Random
Field (MRF), where the variables zk are conditionally independent
of others than the neighboring zk−1, zk+1. This can also be de-
picted as the probabilistic graphical model of Figure 3. Each node
of the model corresponds to the zk of one forward prediction step,
and the lines denote the dependencies between the variables. The
graphical model formulation forms the basis for the rest of the pa-
per, as it allows us to apply belief propagation (BP) methods.

In more general terms, an MRF model can be written as [Ihler and
Mcallester 2009]:

P(z) =
1

Z

(∏
s

ψs(zs)
)( ∏
{s,t}∈E

Ψs,t(zs, zt)
)
, (7)

where the indices s and t denote source and target nodes of a graph-
ical model. E is the set of edges in the model.
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Figure 3: Our graphical model, with each node representing the
state and control variables for a forward prediction step, up to the
planning horizon K.

2.4 Particle Belief Propagation

Building on the MRF formulation above, we now examine how the
toy example of Figure 2 can be mapped to Particle Belief Propa-
gation (PBP), a general-purpose sampling-based belief propagation
method [Ihler and Mcallester 2009]. The motivation for using PBP
is that it combines two powerful approaches: global sampling for
handling multimodal optimization landscapes, and dynamic pro-
gramming to fight the curse of dimensionality. Here, we utilize PBP
to be able to sample the marginals Pk(zk) instead of attempting to
directly sample the much higher-dimensionalP(z). In other words,
we sample and operate on trajectory segments instead of full trajec-
tories. In the end, we are not interested in the marginal Pk(zk) as
such, but estimating them through belief propagation will allow us
to also produce samples of good full trajectories, as explained in
detail in Section 2.5.

Similar to other belief propagation approaches, PBP seeks to com-
pute the beliefs Bk(zk) of the variables of a graphical model. The
beliefs are proportional to the marginal Pk(zk) if the graphical
model is a simple chain or tree. The belief for node k depends on
messagesms→k(zk) passed from other nodes [Ihler and Mcallester
2009]:

Bk(zk) = ψk(zk)
∏
s∈Γk

ms→k(zk), (8)

ms→k(zk) =
∑

zs∈Zs

Ψs,k(zs, zk)ψs(zs)∏
u∈Γs\k

mu→s(zs). (9)

Here, Γs denotes the set of neighbors of node s, and Zs is the do-
main of zs. The messages ms→k from node s to node k can be
considered as (unnormalized) probability density functions of the
target node variables zk. The potentials ψk(zk) represent the ”ev-
idence” for zk (here based on the state and control costs), which
propagate through the graphical model via the messages. The belief
Bk(zk) equals the product of the direct and propagated evidence.

In Particle Belief Propagation, the messages and beliefs of equa-
tions (8) and (9) are estimated by samples z

(i)
k ∼ qk(z

(i)
k ), where

i denotes the sample index and qk(z
(i)
k ) is an arbitrary proposal

distribution. Division by the proposal then gives the importance-
weighted sample messages and beliefs [Ihler and Mcallester 2009]:

m̂s→k(z
(i)
k ) =

1

N

N∑
j=1

Ψs,k(z(j)
s , z

(i)
k )

ψs(z
(j)
s )

qs(z
(j)
s )∏

u∈Γs\k

m̂u→s(z
(j)
s ), (10)

B̂k(z
(i)
k ) =

ψk(z
(i)
k )

qk(z
(i)
k )

∏
s∈Γk

m̂s→k(z
(i)
k ) (11)

where N denotes the number of samples.

Figure 4: A direct application of the Particle Belief Propagation
algorithm to a similar control problem as in Figure 2.

In our case the sample belief B̂k(z
(i)
k ) represents the marginal prob-

ability of a trajectory segment produced by a simulation step with
controls u

(i)
k ending at state x

(i)
k . Although this does not yet yield

us an optimal control or state trajectory, we can already visualize
the beliefs as shown in Figure 4. The figure was obtained by draw-
ing z

(i)
k from a simple uniform qk(z

(i)
k ) except for x

(i)
0 which is

fixed, computing the sample beliefs according to Equation (11), and
plotting the segments corresponding to each z

(i)
k with higher beliefs

mapped to darker colors1. Note that the covariance matrix Q acts
as a tuning parameter; with a too low transition noise, the low tran-
sition potentials between segments can make the beliefs evaluate to
zero within machine precision. A too high transition noise, on the
other hand, blurs the marginals and makes the peaks less distinct.

Figure 4 shows that basic PBP is able to approximate the mul-
timodal marginal distributions corresponding to different ways to
pass the obstacles. The correct information for the control problem
is clearly there, but has yet to be recovered, which brings us to our
method.

2.5 Our Method

Based on the generic PBP algorithm described above, our algorithm
makes several novel contributions for controlling complex simu-
lated characters, including 1) a choice of proposal that enables the
sampling of physically feasible trajectories, 2) adaptive resampling
to adjust between local and global search, 3) a local refinement
backward pass, 4) avoiding zero message values, 5) propagating in-
formation not only within the graph in Figure 3 but also between
animation frames, 6) including various control priors to smooth
movement and aid convergence, and 7) handling the special case
of Q = 0. We call the resulting method Control Particle Belief
Propagation (C-PBP), summarized in Algorithm 2.

The most glaring problem of the basic PBP example of Figure 4
is that the sampled trajectory segments do not connect, i.e., they
cannot be directly combined to form physically feasible trajectories.
The sampled starting position of a segment can also lie inside an
obstacle. Thus, the following starts with the choice of proposal that
yields feasible, realizable trajectories for which one can evaluate
P(z). The best sampled trajectory can then be used both as the
deployed control and a warm-start for the next frame. The beliefs
are used to inform sampling in subsequent iterations (frames).

The Proposal Density Following standard importance sampling
practice, the proposal should be as close to the target density as

1For plotting, we need both an initial and final state for each segment.
Fortunately, the toy example dynamics are linear due to no collisions, and
we can compute the initial state based on the sampled z

(i)
k .
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possible. We implement this by having a cloud of random walk-
ers that start from the known initial state, and whose controls are
drawn following the control potential, u

(i)
k ∼ βk(u

(i)
k ). The cor-

responding states are computed using the dynamics simulator, i.e.,
x

(i)
k = f(x

(h(i,k,−1))
k−1 ,u

(i)
k ). Here, we use the h()̇ notation as the

sample indices may be remapped between forward prediction steps
due to resampling.

As the drawn u
(i)
k fully determine x

(i)
k , q(z(i)

k ) depends only on
u

(i)
k , and we may write

q(z
(i)
k ) = βk(u

(i)
k ). (12)

The chosen proposal quarantees the connectivity of trajectory seg-
ments and simplifies the sample beliefs and messages of Equations
(10) and (11) so that they only depend on the state potentials. Here,
we also utilize the fact that our graphical model is a simple chain,
which allows us to divide the messages into forward and backward
messages m̂fwd and m̂bwd:

B̂k(z
(i)
k ) = αk(x

(i)
k )m̂fwd(z

(i)
k )m̂bwd(z

(i)
k ), (13)

m̂fwd(z
(i)
k ) =

1

N

N∑
j=1

Ψfwd(z
(j)
k−1, z

(i)
k )αk−1(x

(j)
k−1)

m̂fwd(z
(j)
k−1), (14)

m̂bwd(z
(i)
k ) =

1

N

N∑
j=1

Ψbwd(z
(j)
k+1, z

(i)
k )αk+1(x

(j)
k+1)

m̂bwd(z
(j)
k+1). (15)

When implementing the algorithm, the forward messages can be
updated in a single forward pass over the graph, followed by a back-
ward pass that updates the backward messages and beliefs.

Resampling During the forward pass, one can express the for-
ward sample messages recursively in terms of forward beliefs

B̂fwd(z
(i)
k ) = αk(x

(i)
k )m̂fwd(z

(i)
k ), (16)

m̂fwd(z
(i)
k ) =

1

N

N∑
j=1

Ψfwd(z
(j)
k−1, z

(i)
k )B̂fwd(z

(j)
k−1). (17)

B̂fwd(z
(i)
k ) is proportional to the full belief without information

passed backwards along the graph. In the cases where the back-
ward messages do not add much information (e.g., no obstacles
ahead in the toy example), one may improve convergence by greed-
ily terminating paths with low forward belief and increasing the
exploration around the paths with high forward belief. We imple-
ment this as standard particle filter resampling (e.g., [Arulampalam
et al. 2002]), noting that the forward belief is analogous to sample
weights in particle filtering. At the beginning of time step k, we
compute the effective particle count of the previous step

Neff =
1∑

i

(
B̂fwd(z

(i)
k−1

)∑
j B̂fwd(z

(j)
k−1

)

)2 , (18)

where the denominator equals the sum of squared normalized be-
liefs. A small Neff indicates that the beliefs of all but a few tra-
jectories are close to zero. If Neff < TeffN , we first create a
probability distribution function for sample index P(r) such that
P(r) ∝ B̂fwd(z

(r)
k−1). For each sample i, we randomly draw a

sample index r from P(r) and assign the history function such
that the sample i is now mapped to sample r in the previous time
step. This terminates low belief trajectories and forks high belief
ones, as shown in Figure 2A. Similar to particle filtering, where
sample weights are set to constant after resampling, we omit the
B̂fwd(z

(j)
k−1) from the forward message of Equation (17) at steps

where resampling takes place.

In the simulations of this paper, Teff = 0.5. Teff < 1/N corre-
sponds to no resampling, in which case the trajectories are simu-
lated up to the planning horizon even if they pass right through an
obstacle in the toy example. Teff > 1 corresponds to resampling
in every frame, which may result in premature termination of good
trajectories.

As illustrated in Figure 2A, sampling the marginal zk with our pro-
posal and resampling results in a tree of trajectories. Backtracking
the trajectories that reach the planning horizon k = K allows one
to recover N full control and state trajectories. The full density
P(z) can now be evaluated for the trajectories, and the best trajec-
tory used as a result, or a local refinement of the trajectories can be
attempted, as explained in the following.

Local Refinement Since the dynamics simulation is computa-
tionally heavy, it makes sense to try to extract as much information
as possible from the generated samples. This is why we have added
the additional local refinement backward pass given by Algorithm
1, executed after all random walkers reach the planning horizon K.
The local refinement helps in the final convergence, decreasing the
control cost, which in the case of minimized control forces corre-
sponds to smoothing the trajectory.

Algorithm 1 The local refinement backwards pass.

1: Initialize x̂K =
∑

i α(x
(i)
K

)x
(i)
K∑

i α(x
(i)
K

)

2: for k = K − 1...1 do
3: Compute a Gaussian model of the concatenated vectors

[x
(i)
k ,u

(i)
k ,x

(i)
k+1], weighted by B̂fwd(z

(i)
k )

4: Set x̂k, ûk = E[xk,uk|xk+1 = x̂k+1] based on the model.
5: end for

At line 1, x̂K is initialized to the mean of the terminal states of the
trajectories, weighted by the corresponding state potentials. This
is a simple estimate of the optimal final state. Inside the loop of
Algorithm 1, a Gaussian model is constructed from the samples
[x

(i)
k ,u

(i)
k ,x

(i)
k+1] generated during the forward pass and weighted

by the forward belief B̂fwd(z
(i)
k ) (line 3). The next x̂k and ûk

are then computed through the expectation based on the Gaus-
sian model (line 4). Due to the weighting, the expectation maxi-
mizes both forward belief and the probability that simulating for-
ward from x̂k with controls ûk yields x̂k+1. As x may be high-
dimensional and there may be only a small number of trajectory
samples, the expectation is computed in a regularized form

E[xk,uk|xk+1 = x̂k+1] = µ(xk,uk) +

Σ(xk,uk),xk+1

(
Σxk+1,xk+1 + λI

)−1 (
x̂k+1 − µxk+1

)
. (19)

Here µa denotes the mean of random variable a and Σa,b denotes

5



To appear in ACM Transactions on Graphics (Proc. SIGGRAPH 2015)

Figure 5: The graphical model including both animation frames
n and forward simulation steps k. The message passing between
frames is directed and does not thus cause loops in the model.

the covariance matrix of random variables a and b. λ is a regular-
ization parameter. We use λ = 0.001 in all our simulations.

Avoiding Zero Potentials and Messages We have found that in
the humanoid simulation, the state potentials can easily evaluate to
zero within machine precision in difficult situations with high state
costs. This can cause, e.g., the character simply lying immobile
on the ground. To remedy this, we scale the state costs so that
the smallest state cost for each forward simulation step k does not
exceed a threshold Tγ = 20, which makes the potential functions
less peaked:

γ =
Tγ

max(Tγ ,mini(sk(x
(i)
k )))

(20)

αk(x
(i)
k ) = exp(−0.5γsk(x

(i)
k )). (21)

Operation Over Multiple Frames To propagate information
over animation frames, we extend our graphical model to include
both forward simulation steps and frames, as shown in Figure 5.
The figure illustrates how zk,n is informed by zk+1,n−1, as time
progresses between frames.

We also employ the following steps between frames:

• For frame n, we deploy the first control of the best trajectory
found in the forward pass of previous frame to define the initial
state x0,n = f(x0,n−1, u

(b)
1,n−1), where b is the index of the best

trajectory. In terms of the graphical model, this means that the
message from z0,n−1 to z0,n is a Dirac delta function in the state
dimensions.

• We use the best trajectory as well as the results of Algorithm 1 as
warm-starts. The warm-starts occupy two ”slots” of the limited
sample budget N . The remaining samples are each drawn using
samples of the previous frame as a prior, which in the graphical
model corresponds to the messages from node (k + 1, n− 1) to
(k, n), as explained below in detail.

Note that we do not deploy the results of Algorithm 1, as the Gaus-
sian models are not always accurate and small errors in estimated
controls may lead to large deviations of the resulting state sequence.
In case Algorithm 1 produces a good trajectory, it will be adopted
as the best trajectory in the next frame.

Control Priors Human movement often conserves energy which
is why motion synthesis cost functions typically have terms that
penalize high velocity, torque, acceleration, and jerk (the time-
derivative of acceleration). We also assume that the environment

changes somewhat smoothly between frames. This is why we use
the following terms in the control potential and proposal:

βk(u
(i)
k,n) = N (u

(i)
k,n; 0, σ2

0Cu)

N (u
(i)
k,n; u

(h(i,k,−1))
k−1,n , σ2

1Cu)

N (u
(i)
k,n; 2u

(h(i,k,−1))
k−1,n − u

(h(i,k,−2))
k−2,n , σ2

2Cu)

N (u
(i)
k,n;µ

(i)
k,n,Ce)

P(u
(i)
k,n|z

(:)
:,n−1), (22)

where we denote by z
(:)
:,n−1 the possible dependency on more than

one forward prediction step and sample of the previous frame.

The first three terms of Equation (22) correspond to minimizing the
squared control and its first and second derivatives. Cu is a diago-
nal covariance matrix used as a tuning parameter together with the
scalars σ0, σ1, σ2. For example, if u is defined as the target angular
velocities of joint motors, one may adjust the relative minimization
of velocity, acceleration, and jerk using σ0, σ1, σ2. Cu can be set
to identity or adjusted to make some joints overall less active.

To clarify the second and third terms of Equation (22), the deriva-
tive of the control can be formed using backward finite difference

∆uk,n =
uk,n − uk−1,n

δt
. (23)

Here δt is the time difference between frames or time instants. If
we want to keep the derivative zero, we make uk,n have the highest
probability to be uk−1,n based on Equation (23). Similarly, if we
want to set the second derivative equal to zero, we choose uk,n by
the following equation that is obtained by finite differences

∆2uk,n =
uk,n − 2uk−1,n + uk−2,n

δt2
= 0. (24)

This implies that we should make uk,n have the highest probability
to be 2uk−1,n − uk−2,n.

The fourth term in Equation (22) specifies an optional Gaussian
prior that can be set by the application. We use this in the bipedal
control to specify a pose prior, as explained in Section 4.2.

The last term in Equation (22) represents the informa-
tion passed from the previous frame. In principle, we
could pass a message from node (k + 1, n − 1) to
node (k, n) similar to the backward and forward mes-
sages, using the transition potential Ψ(zk+1,n−1, zk,n) =
N (xk−1,n; xk,n−1,Q)N (uk,n; uk+1,n−1, σ

2
mCu), which in-

creases exploration around the states and controls that previously
had high belief. σm is a user-adjusted ”mutation” range parameter.
However, with a limited sampling budget it is better to use prior
information for drawing good samples in the first place instead of
discounting the beliefs of samples already drawn. Thus, instead
of incorporating the message in Equation (11), we include the
corresponding conditional Gaussian Mixture Model (GMM) in
Equation (22):

P(u
(i)
k,n|z

(:)
:,n−1) ∝

N∑
j

w(j)N (u
(i)
k,n; u

(j)
k+1,n−1, σ

2
mCu),(25)

w(j) = B̂(j)
k+1,n−1(z

(j)
k+1,n−1) ·

N (x
(i)
k−1,n; x

(j)
k,n−1,Q). (26)
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Through Equation (26), when drawing the control vector sample
u

(i)
k,n to simulate forward from a previous state x

(i)
k−1,n, the weights

of the GMM are adjusted based on the beliefs of the previous frame,
as well as the distance of the previous state from the trajectories of
the previous frame. Note that in order to minimize the number of
tuning parameters, we use the same Q in transitions between frames
and between time instants, although Equation (26) could also use a
different covariance matrix.

To prevent the sampling from converging to a local optimum, we
reserve Nn samples of the sampling budget N to be drawn without
using the P(u

(i)
k,n|z

(:)
:,n−1) term, as noted on lines 21-22 of Algo-

rithm 2.

Allowing Zero Transition Variance Adjusting Q may be diffi-
cult with high-dimensional x, and one might want to first try setting
Q = 0. In this case, the transition potentials in equations (14) and
(15) are one when j and i belong to the same trajectory, and zero
otherwise, which simplifies the message computations as:

m̂fwd(z
(i)
k ) = αk−1(x

(h(i,k,−1))
k−1 )m̂fwd(z

(h(i,k,−1))
k−1 ), (27)

m̂bwd(z
(i)
k ) = αk+1(x

(h(i,k,1))
k+1 )m̂bwd(z

(h(i,k,1))
k+1 ). (28)

This reduces the backward message passing to simply backtracking
the generated trajectories which provides no additional information.
Fortunately, our local refinement backward pass still combines in-
formation from multiple trajectories through the Gaussian models
(Algorithm 1 Line 3), achieving a similar smoothing effect. As
shown in Figure 6, both the local refinement and nonzero Q im-
prove convergence in the toy problem, and can be used together or
separately. The supplemental video illustrates an online case with
a moving target, Q = 0 and no local refinement (00:37), Q 6= 0
and no local refinement (00:41), and with both Q 6= 0 and local
refinement (00:46). The main difference between the backwards
message passing and local refinement (smoothing) is that the for-
mer only updates the beliefs, and the latter can yield a trajectory
that can lie outside the states and controls of the samples.

Figure 6: Convergence of our algorithm in the problem of Figure
2 with zero and non-zero transition noise, and with and without the
Gaussian local refinement (LR) pass, plotted as the average of 10
runs. Using both non-zero transition noise and the local refinement
produce best results.

For adjusting Q one should consider that using equations (27) and
(28) instead of (14) and (15) removes the ability of neighboring
trajectories to contribute to each other’s beliefs through the sum-
mations in equations (14) and (15). Figure 7 illustrates how the
summation with the Gaussian kernels in Equation (15) is central to

the dynamic programming nature of PBP, i.e., the ability to reuse
computing results. With Q = 0, the algorithm forgets the trajecto-
ries that get pruned in resampling.

Figure 7: Even if a trajectory is pruned in the resampling of the
forward pass (here the lowest one), its marginal states and controls
may gain some belief in the backwards message passing of Equation
(15) with the Gaussian transition potentials (Q 6= 0) illustrated in
black. In this case, the pruned trajectory could yield a smoother
path to the target (green circle), and the gained belief will make it
influence the sampling of the next frame through Equation (26).

A modification for Q = 0 is that we do not use the GMM
of Equation (25), the weights of which would evaluate to zero
for practically all samples. Instead, for each sampled con-
trol sequence u

(i)
1...K,n we randomly select a previous trajectory

u
(j)
k=1...K,n−1,P(j) ∝ B̂(j)

K and use the following in Equation (22)
instead of Equation (25):

P(u
(i)
k,n|z

(:)
:,n−1) = N (u

(i)
k,n; u

(j)
k+1,n−1, σ

2
mCu). (29)

The modified prior of Equation (29) propagates the previous beliefs
forward between frames somewhat similar to the GMM of Equation
(25). Due to equations (27) and (28), B̂(j)

K =
∏
k α(x

(j)
k,n−1), which

is proportional to the importance-weighted probability of the whole
trajectory. Using prior control sequences independent of state can
be criticized, as the resulting state sequence may deviate in the next
frame due to the different initial state. This deviation is fortunately
minimal, as due to resampling, the the prior trajectories form a tree
with root at k = 0, and many of the trajectories initially follow
the best trajectory that defines the new initial state. Note that the
prior trajectory indices j are propagated in the sampling data struc-
tures so that in resampling operations, the forked paths use the prior
trajectory of their parent.

Figure 8 illustrates the priors for a single control vector in the case
of Q = 0.

3 Related Work

Having described our method and central concepts such as belief
propagation, we now consider our work in relation to previous re-
search.

Previous work has demonstrated that robust online motion can be
generated in a variety of ways even without the aid of motion cap-
ture data. For example, some researchers have shown that good
controller design decisions can carry a long way from handling
perturbations to adapting new situations [Yin et al. 2007; Coros
et al. 2010; Jain et al. 2009; Ha et al. 2012]. Other researchers
develop abstract models that capture the essence of dynamics to
optimize a longer horizon of motion online [Mordatch et al. 2010;
Wu and Popović 2010]. Moreover, leveraging simulated training
data to learn control policies has extended reinforcement learning
or policy search algorithms to much more challenging applications
such as gymnastics or bicycle stunts [Borno et al. 2014; Liu et al.
2012; Tan et al. 2014]. While the independency of motion capture
data is a nice feature, some researchers advocate that using a small
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Figure 8: The sampling distribution for u(i)
k,n (See Equation (22)).

The sampling is done from the black distribution which is the prod-
uct of the others. The previous values u(i)

k−3···k−1,n are drawn as
the blue points. Green and red denote the minimization of first and
second derivatives of control, respectively. Gray denotes keeping
the control at zero. Dark cyan denotes the control in the previous
frame according to Equation (29).

amount of motion capture can greatly enhance the quality of the re-
sulting motion and reduce the burden of parameter tuning [Da Silva
et al. 2008; Muico et al. 2009; Ye and Liu 2010; Lee et al. 2010].
All these methods have demonstrated the ability to operate in new
or unexpected environments, but their offline dependency prevents
them from exploring multimodal control strategies online. For ex-
ample, none of the previous methods can switch the balance strat-
egy from modulating postures to putting a hand on the wall, with-
out pre-defined state machines, pre-recorded data, or pre-computed
policies. In this paper, we developed a model-predictive-control al-
gorithm to make online, multimodal control decisions with minimal
offline dependency.

Our work builds on the sampling-based belief propagation meth-
ods that have been proven powerful in, e.g., computer vision track-
ing of articulated bodies [Ihler and Mcallester 2009; Sudderth et al.
2010]. Such methods combine two approaches that have previously
been distinct in MPC: 1) global sampling for handling multimodal-
ity, and 2) utilizing the dynamic programming principle to trans-
form a high-dimensional estimation problem into connected lower-
dimensional ones. In vision-based human tracking, Nonparamet-
ric Belief Propagation has been used to sample the marginals cor-
responding each body part instead of directly sampling the high-
dimensional distribution of body model parameters [Sudderth et al.
2010]. In control, dynamic programming has been widely utilized
in the variants of Differential Dynamic Programming (DDP). DDP
is based on a local second order Taylor expansion of the trajec-
tory, but instead of applying Newton optimization to all trajectory
parameters, it performs a sequence of Newton steps to recursively
solve the controls for each time instant [Tassa et al. 2014]. DDP
is also analogous to belief propagation using Gaussian marginal
density models, as exemplified by the AICO algorithm [Toussaint
2009]. Todorov [2008] established a general relation between
stochastic control and estimation, suggesting the use of belief prop-
agation. Building on this, Kappen [2012] has also established that
optimal control is identical to graphical model inference if the cost
can be written as a KL divergence.

As our local refinement pass also uses Gaussian models, our method
is related to AICO. The main difference is that we do not build our
Gaussian models based on local Taylor expansions, which are prob-
lematic with discontinuous and multimodal cost and dynamics. We
simply use ensemble estimates for the Gaussian means and covari-
ances, reusing the dynamics simulation results of the forward pass.
The estimates are obviously not accurate in many situations, which
we handle by not automatically deploying the estimated control;

instead, it is evaluated as an initial guess in the next frame. The
supplemental video at (00:50) shows how AICO produces smooth
results, but in contrast to our method, it fails to switch modes in the
multimodal environment of our toy problem. We expect the same
to apply to other local trajectory optimization methods including
DDP based methods such as iLQG and CC-DDP [Tassa et al. 2012;
Tassa et al. 2014]. Considering more complex scenarios, the toy
problem is analogous to interactive locomotion with obstacles and
leg intercollisions. Changes in steering direction modify the cost
landscape, similar to the moving target of the toy problem.

In the context of this paper, we consider the recent work of Tassa
et al. [Tassa et al. 2012; Tassa et al. 2014] to represent the state
of the art in DDP-based MPC, as 1) they add the handling of box
constraints for the controls, which is crucial as real muscles and
robot actuators cannot produce infinite forces and torques, and 2)
they demonstrate their methods in the control of simulated bipeds,
whereas most control theory papers deal with less complex systems.
Compared to [Tassa et al. 2012; Tassa et al. 2014], our work adds
the abovementioned robustness to multimodality, and the demon-
stration of a wider variety of movements.

Considering sampling-based control, most of the previous meth-
ods draw samples of full trajectories before computing their costs
(e.g., [Hämäläinen et al. 2014; Kalakrishnan et al. 2011]). In con-
trast, our forward pass with resampling informs the control of each
simulation step with the previously evaluated costs. Hämäläinen
et al. [2014] demonstrate bipedal balancing and recovery only on
a simple horizontal plane, and they report that they need a pose-
keeping initial guess that makes movement unnaturally stiff. Our
system handles a more complex environment and needs no such
initial guesses.

The Particle Filter Model Predictive Control (PF-MPC) method
[Stahl and Hauth 2011; Kantas et al. 2009] also simulates control
forward with resampling. In fact, setting Q = 0 in our method
makes the forward pass identical to PF-MPC. The interest in PF-
MPC is increasing and it has been applied to, e.g., air traffic man-
agement [Eele et al. 2013], but it has not been demonstrated with
simulated bipeds. The main difference of PF-MPC in contrast to
our method is that information is only propagated forward and there
is no backward messages or local refinement.

Considering that the forward simulation with resampling produces
a tree of trajectories, both our method and PF-MPC are related to
motion planning using the rapidly exploring random tree (RRT)
[Lavalle 1998] or the more recent fast marching tree (FMT) [Jan-
son et al. 2013]. They have also been used successfully in simple
control problems [Xu et al. 2008]. The methods however operate
in state space — RRT samples a new state xrand and then selects a
control u that minimizes the distance from a nearest state to xrand.
In biped control with full dynamics, selecting the u is nontrivial,
which is why we first sample u and then simulate the correspond-
ing x.

4 Simulation Model and Parameters

For our 3D humanoid tests, we use Open Dynamics Engine (ODE)
with the character model shown in Figure 9. The simulation ge-
ometry consists of 15 bones (capsules) connected with 3-DOF ball
joints except for knees, elbows, and ankles with 1-DOF hinge
joints. The model is 1.75m high with a total mass of 70kg. The
joints have Euler angle limits manually tuned to match those of an
athletic human. Self collisions are enabled between legs but dis-
abled otherwise for best performance. For control, the joints also
have ODE angular motors, which take as inputs the desired angular
velocities around joint axes and a maximum force that the motor
can use to reach the velocity. Inside ODE, the maximum force is
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Figure 9: Our character and the corresponding physics simulation
geometry consisting of 15 bones (capsules).

used as a constraint in the LCP solver. We run the simulation at a
fairly large time step of 1/30s. The large time step requires the use
of ODE’s slower but more stable O(N3) direct solver instead of
the iterative solver. Selecting the constraint solver and the timestep
is a balancing act - the large time step causes some contact instabil-
ity, but in the end yields a bit better performance than the iterative
solver that requires a time step < 1/100s for stability in our case.

We have integrated our C-PBP method with the Unity 3D game
engine that was used to produce the visuals in the figures and on the
supplemental video. The character mesh is attached to the physics
bones using standard skinning.

4.1 Control Parameterization

We use the parameterization uk = [ωk,Lk], where ωk is a vector
of ODE motor target angular velocities for all bones, with a total of
30 elements. Lk denotes the motor force limits. Here we simplify
by optimizing the limits only for 5 bone categories instead of all
motors. The categories are left arm, right arm, left leg, right leg,
and torso. In total there are 35 optimized control parameters for
each forward prediction step k.

We experimented with both joint velocity and torque parameteriza-
tions, but in the end found controlling velocities to produce more
stable results. For example, balancing can be implemented in many
cases by simply setting ωk = 0. This effectively offloads the low-
level torque computations from C-PBP to the ODE solver. The
drawback of this approach is that the joints never relax as ODE
constantly updates the motor torques needed to reach the ωk. To
allow the joints to relax, we also sample and minimize the Lk using
the zero-mean Gaussian prior in Equation (22).

To prevent occasional high-velocity, high-force glitches due to out-
lier samples, we also include maximum and minimum value bounds
for the uk. When drawing from the Gaussian mixture or Gaussian
resulting from Equation (22), one first selects a Gaussian and then
draws the sample from it. After the selection, we use inverse CDF
sampling to truncate the Gaussian between the bounds.

4.2 Pose Prior

In all our demos, the character attempts to stay close to some target
pose. To prevent the drawing of samples that get discarded due to
high deviation from the target, we do not use a quadratic pose devi-
ation cost, but instead add the corresponding Gaussian prior using
the µ(i)

k,n,Ce in Equation (22). Omitting the pose prior produces
unnaturally large movement with the joints often being driven to
the limits.

Since the motors are parameterized in terms of target angular ve-
locities ω, we set the prior mean as µ(i)

k = (ζtarget − ζ(i)
k )/δt,

where ζ(i)
k denotes the vector of current motor angles (i.e., current

pose) and δt is simulation time step. To minimize the number of

tuning parameters, we specify the pose prior variance Cov(ζ) us-
ing a single scalar σp and the Cu already used in Equation (22),
Cov(ζ) = σpCu. Assuming transition ζk = ζk−1 + ωδt we have
Ce = σpCu/δt

2. This can be verified by considering that ζk−1 is
known at time k, and:

Cov(ω) = Cov
(

ζk−ζk−1

δt

)
= 1

(δt)2

Cov (ζk)︸ ︷︷ ︸
σpCu

−Cov (ζk, ζk−1)︸ ︷︷ ︸
=0

+ Cov (ζk−1)︸ ︷︷ ︸
=0

 . (30)

Note that the above only applies to the velocity parameters, and the
components of Ce corresponding to the motor force limits L are
set to a large value so that they have no effect.

4.3 Optimizer Parameters

The following lists our settings for the optimizer parameters.

• Number of simulated trajectories (samples) per frame (N ), i.e.,
the sampling budget. A high N increases robustness and de-
creases movement noise (tremor). We use N = 32.

• Planning horizon (K). We use 1.2 seconds for all the behav-
iors in the supplemental video. Shortening the planning horizon
would increase frame rate, but result in less robust, more short-
sighted behavior.

• Mutation range σm = 0.25 .

• Resampling threshold Teff = 0.5.

• The number of ”no prior” samples Nn = 0.25N .

• Transition noise (Q). We found this difficult to adjust, and finally
ended up using Q = 0, although non-zero Q does improve con-
vergence in the simple example of Section 2. Our problems are
probably due to the high dimensionality of the state space com-
bined with the low sample count. We hypothesize that nonzero
Q will be more useful, e.g., in offline optimization with a high
sampling budget, which we will explore as future work.

The state xk,n ∈ R36 seen by our controller includes a subset of the
full ODE simulation state, comprising the 3D position and velocity
of the character’s pelvis, head, hands and feet. This was found
to produce good results with the local refinement backwards pass.
The local refinement sometimes produces erroneous results due to
the inaccuracies of the Gaussian models but increases movement
stability visibly in, e.g., balancing and reaching tasks.

4.4 Movement Parameters

The following gives a list of the movement tuning parameters that a
control designer should consider in addition to the basic optimizer
parameters above.

• The relative variances of each control variable (diagonal matrix
Cu in Equation (22)). This is the most difficult parameter to
tune. Too large variances result in, e.g., hands flailing about all
the time or the spine contorting unnecessarily. Too small vari-
ances result in sedated movement that is not able to reach goals.
We set Cu to favor large movement of hips and shoulders, and
small movements of spine, wrists and ankles.

• The prior scales σ0, σ1, σ2, σp in Equation (22), denoting joint
angular velocity, torque, angular jerk, and pose.
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• Sampling bounds. We use a range [−1.3π, 1.3π] for the angular
velocities and [0, 300] for the force limits. Note that these only
have effect if σ0 is large.

4.5 Combining Movement Goals

According to our experiments, our control method is powerful and
can make a large variety of movements emerge without tuning pa-
rameters for every separate move. However, tuning leads to more
natural movement especially regarding the σ0, σ1, σ2, σp parame-
ters. We have found it useful to model the dynamically changing
overall arousal and effort of human movement. For example, one
may stand relaxed and calm, but then become tense and aroused if
someone pushes one off balance. Sport science has also established
that there is an optimal arousal level for each type of movement
[Schmidt and Wrisberg 2008]. High effort, low accuracy skills such
as weight lifting benefit from high arousal, whereas low effort and
high precision skills are easier with low arousal.

We have found that if one does not make the pose, velocity, accel-
eration priors weaker in high effort movements, the results look too
relaxed or even sedated. On the other hand, using the ”high effort”
settings for basic balancing increases movement noise and makes
the character appear tense and twitchy. Some degree of noise is
desirable for naturalness as real human movement is not noise-free
[Schmidt and Wrisberg 2008].

Based on the considerations above, we have adopted a model where
different movement goals such as balance and reach are imple-
mented as software components that interact using the following
mechanisms:

• Each goal computes a state cost. The costs are combined addi-
tively. The various cost components are explained in detail in the
next section.

• Each goal defines a desired effort (arousal) level in the range
[0, 1]. For example, the ”balance in pose” goal prefers high effort
when far from balance. At each forward prediction step k, the
effort levels are combined using a max function, i.e., the goal
desiring the highest effort dominates.

• We specify the tuning parameters σ0, σ1, σ2, σp separately for
high and low effort. The values passed to the optimizer are in-
terpolated linearly between the two based on the overall desired
effort. The desired effort has no effect on the state cost.

5 Results

In the following, we refer to supplemental video locations as
(mm:ss). All the material in the supplemental video was captured
live using Fraps screen capture software with N = 32 on a 6 core
desktop PC. The target frame rate of 30fps can be achieved by set-
ting N ≈ 24, but the subjective quality of the results is better at
N = 32, which decreases movement noise and results in 20-30fps,
which still allows fully interactive manipulation of the character us-
ing the mouse.

We demonstrate our method for a multitude of behaviors described
below together with the cost function design and the parameters.
Our results advance the state-of-the-art in terms of variety of move-
ments, especially considering that the optimization runs real time
or near-real-time (depending on parameter settings) with no anima-
tion data, no pre-computed control policies, and no complex design
that becomes brittle in unexpected environments. We also demon-
strate novel emergent use of the environment: When balancing on
a ball, the character places hands on the walls to stabilize, and tries
to climb back on top of the ball after falling (02:48). When trying

to keep a ball stable and high, the character automatically moves
the ball from head to hand if disturbed (03:25). In the steerable
locomotion demo, the character creatively climbs over obstacles.

5.1 Balancing and Recovery

In our balancing demo (00:58), the user may drag the character
using left mouse button, or apply a large impulse using the right
mouse button. Our character maintains balance when not disturbed
and recovers from both the large and small disturbances, taking
emergent footsteps and flipping around in air to avoid damage when
landing. The behavior emerges from the state cost, which is com-
posed as the sum of several terms:

sk(xk) =
s2
vel

σ2
vel

+
s2
com

σ2
com

+
s2
y

σ2
y

+
s2
feet

σ2
feet

+
s2
ω

σ2
ω

+
s2
up

σ2
up

+
s2
fwd

σ2
fwd

+ sdamage. (31)

For brevity, we have dropped the dependency of the terms on xk.
The σ are tuning parameters, which can be interpreted as tolerances.
The balancing cost has considerably many terms, but on the other
hand, all the other behaviors reuse it and add or disable just a few
terms.

svel is the speed of the center of mass (COM). scom is the hor-
izontal distance of COM from a line connecting the character’s
feet. sy penalizes the pelvis bone getting lower than in the tar-
get pose relative to the mean of feet, i.e., sy = min(0m, ypelvis −
ymeanfeet − dy). dy = 1.04m, which corresponds to the ver-
tical difference between the pelvis and the mean of the feet in
the target pose. sfeet penalizes feet being too far apart, sfeet =
max (0m, dleft foot,right foot − 0.8m), where d denotes distance be-
tween body parts. sω is the angular speed of the pelvis. sup is
the difference between the pelvis up vector and the global up vec-
tor. sfwd is only used if the user is dragging the character using
the mouse, in which case it is the horizontal difference between the
head facing direction and the dragging force vector direction. This
is motivated by how a real humans tend to look at someone pulling
their hand.

sdamage = 10000 if the character’s head touches the environment
and zero otherwise. We first used a damage cost proportional to
collision velocity, but found out that it is better to categorically for-
bid head contact, as the character otherwise tends to, e.g., lean on a
wall for support using its forehead.

The supplemental video was captured with σcom = 0.025m, σy =
0.025m, σvel = 0.25m/s, σfeet = 0.05m, σω = 2, σup =
0.1m, σfwd = 0.1m. The pose prior (Section 4.2) favors a basic
standing pose.

5.2 Reaching

In our reaching demo (01:26), the user may press a button to ac-
tivate a glowing sphere that the character tries to reach using left
hand. The character is able to take steps and shuffle feet to reach the
target. When the target is behind the character, he reorients himself
by changing foot positions instead of twisting the torso. When the
target is far beyond the reach with an obstacle in between, the char-
acter tries to step on the obstacle and jump toward the target. All
these behaviors emerge from the balance cost of Equation (31) with
two minor modifications: 1) adding the cost term s2

r/σ
2
r , where sr
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is the distance from hand to target and σr = 0.05m, and 2) increas-
ing the pose prior variance (Section 4.2) for left arm angles. With-
out the variance adjustment, the reaching goal and the pose prior
are in conflict. To maximize naturalness, we also use the sfwd of
Equation (31) to make the character look at the target.

5.3 Balancing on Top of a Ball

In the balancing on ball demo (02:13), we remove the sy and
sω from the balancing cost and add the terms s2

bcom/σ
2
bcom and

s2
by/σ

2
by , where sbcom is the horizontal distance of the character

COM from the ball COM, and sby = min(0m, ypelvis−yballTop−
dy). dy = 0.9m, σbcom = σby = 0.025m. The additional cost
terms are also mapped to the desired effort level. Without this, the
character does not attempt to climb back on the ball but rather just
stands beside it. The pose prior (Section 4.2) favors a T-pose, which
is typical for a human in difficult, unstable balancing.

When commanded to reach the glowing sphere or being pushed on
the ball, the character tries to maintain balance by regulating his
center of mass or repositioning his feet. This motion causes the
ball to roll on the ground, which further increases the challenge of
the task. Note that when the ball is nearby a wall, the character
autonomously raises his arm to use the wall for support. None of
these behaviors are programmed in a state machine or a control
policy.

The radius of our ball is 50cm. The character is stable on a heavy
ball (250kg), and reaching can be activated even while the ball
(02:16). On a light ball (10kg), the character eventually falls off
(03:00), but also often eventually climbs back on (03:10).

5.4 Juggling a Ball

In the ball juggling demo (03:18), the character attempts to keep the
ball balanced on its head or at least on some body part. This is im-
plemented by augmenting the balance cost with (‖hhead − hball‖2 +
max(0m, yhead − (yball − r))2)/σ2

hpos, where r is ball radius and
h denotes the horizontal position. The max term causes no cost if
head is lower than the ball. If the ball is in contact with the charac-
ter, the head position is replaced by the contact point for maximum
ball handling precision. We use σhpos = 0.025m. When the charac-
ter is about to lose control over the ball due to external pushes, he
quickly switches the strategy from juggling with his head to with
one of his arms. When the ball finally falls on the ground, the char-
acter kicks the ball up, lets it bounce off the wall, and quickly ducks
underneath the ball so that it lands on his head. This complex se-
quence of actions typically requires sophisticated offline planning,
but our algorithm is able to solve it in real-time.

5.5 Steerable Locomotion

In the locomotion demo (03:45), the character can be steered with
the analog stick of a gamepad. By simply replacing the svel term
in Equation (31) with a similar term that minimizes the difference
from the target velocity, here 1.25m/s in the direction of the ana-
log stick, we are able to repurpose a static balance controller to a
locomotion controller. We admit that the locomotion is not beau-
tiful, but this was done without any prior knowledge of posture or
timing of human gait.

The character handles sudden turns and small obstacles for foot
placement but stops in front of large obstacles. However, the user
can press a gamepad button to activate a ”turbo” mode (04:19) that
allows the character to discover ways to climb over obstacles. This
is simply done by disabling the sup and scom terms of the balanc-
ing cost, setting desired effort level to maximum, and adjusting the

Figure 10: Success probabilities in getting up and balancing on
a moving ball, with K=1.2 and varying N (left), and N=256 and
varying K (right).

target velocity slightly upwards. Disabling the terms is needed as
the climbing may require leaning on top of the obstacle with torso
not upright and COM not directly above feet.

5.6 Parameter Exploration

The sampling budget N and planning horizon K are the most criti-
cal parameters for both robustness and computing cost. To explore
their effect, we have run a series of simulations with different N
and K and measured the average probability of success. We used
25 repetitions of two trials with no user interaction to control for
other than the manipulated parameters: A) the balancing objective
of Section 5.1 with the character initialized in a supine T-pose so
that it has to both get up and balance, and B) the balance-on-ball
objective of Section 5.3, with the character dropped on a ball that
is initially rolling to require emergent locomotion on the ball. Suc-
cess was defined as the state cost being lower than a threshold at 5
seconds from the start of the test. The thresholds were adjusted so
that the character must be stable but some deviation from the target
pose is allowed. The results are illustrated in our parameter explo-
ration video (part of the auxiliary material) as well as in Figure 10.
The figure indicates that increasing N and/or K improves robust-
ness and both parameters must be large enough for any chance of
success. With our defaultN = 32,K = 1.2, doublingN improves
the success rate from 0.6 to 0.92 in task B. K > 1 appears to be
required for task B, but on the other hand, our subjective experience
is that K = 2 starts increasing movement noise, apparently due to
the increased number of recursions decreasing the accuracy of Al-
gorithm 1. The video visualizes the results of Algorithm 1 using a
yellow trajectory for the pelvis, which can be observed to deviate
from the current best trajectory (green) more often with high K.
The sampled trajectories are shown in grey.

5.7 Limitations

The main limitation of our system is that it is only barely real-time,
and one would like to both increase the sample budget N and plan-
ning horizonK to improve the movement quality. Presently, move-
ment is slightly stiff and noisy. Stiffness and noise can be reduced
by decreasing the prior variances for the motor force limits and an-
gular velocities. This however also decreases the success rate of
recovering from large disturbances if one does not compensate by
increasing N and K. Fortunately, our method parallelizes trivially,
and can thus benefit from future increases in computing power.

Our character model is also too simple, e.g., for more complex ob-
ject manipulation tasks. As the physics geometry does not model
hand details, the character often makes heavy contact with the en-
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vironment using the end of the hand capsule, i.e., fingertips. This
looks unnatural, which we have fixed by manually overriding the
sampled wrist controls if the hand is approaching a solid object at
high velocity. In addition to the simple skeletal model, we are also
using simple motors instead of more detailed muscle models, which
makes it unlikely that fully natural movement would emerge even
with unlimited sampling budget.

Another important limitation is that we are not modelling the limits
of human perception. The forward simulation gives the character
uncannily perfect situational awareness. For example, without the
explicit guide to look at the mouse cursor (the sfwd in Equation
(31)), the character does not bother turning if dragged backwards,
as it does not need to see the ground to place a hand for support.

6 Conclusion

We have presented a novel sampling-based method for online con-
trol of simulated characters. The key components of the sampling
are a forward pass with resampling similar to previous work on
Sequential Monte Carlo and particle filters, augmented with back-
wards message passing and recursive local refinement of the control
trajectory. Considerable care was also put to including as many cost
function components as possible in the proposal distribution, which
minimizes redundant sampling and simulation of high-cost trajec-
tories. In our case, the proposal includes minimization of velocity,
acceleration, and jerk as well as the difference from a target pose.

Our results demonstrate a large variety of interactive behaviors that
emerge from adding or disabling a few terms to a basic balancing
cost function. Our behaviors are robust and adaptive - the character
recovers automatically from large and small disturbances, and uses
the environment when applicable. This provides new opportuni-
ties for both animation research and the development of interactive
experiences such as games.

One clear future development direction is online learning and grad-
ual improvement of the optimization results, e.g., to achieve higher
quality locomotion without sacrificing the adaptiveness and interac-
tivity. We hypothesize that we do not need to learn whole trajecto-
ries but only lower-dimensional marginal density priors that can be
plugged in similar to our Gaussian mixture based on the previous
frame (Equation (25)). We also aim to test our method with more
detailed hand geometry as well as in offline motion optimization.

Considering the limitations outlined in Section 5.7, more detailed
models of human perception need to be developed for improved re-
alism. The information produced by the forward simulation has to
be filtered to contain only such predictions that real humans could
formulate based on their senses and mental models. This is a fasci-
nating topic, and we hypothesize that it might be reasonable to not
produce the information in the first place, e.g., terminate a simu-
lation trajectory early and save computing resources if there is an
event that will make the rest of the trajectory be affected by infor-
mation not available through realistically simulated senses.
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Algorithm 2 Control Particle Belief Propagation (C-PBP) for
frame n.

1: Input: Initial state x0,n, previous trajectories u
(i)
1...K,n−1,

previous smoothed trajectory û1...K,n−1, previous best
trajectory u

(b)
1...K,n−1, state and control cost functions

s
(i)
k,n(x

(i)
k,n), c

(i)
k,n(u

(i)
k,n), transition function f(x,u), number of

forward planning steps K, number of samples N , number of
”no prior” samples Nn, resampling threshold Teff, transition
covariance Q, prior parameters Cu, σ0, σ1, σ2

2: Output: Optimal control trajectory u
(b)
1...K,n, smoothed trajec-

tory û1...K,n, sampled trajectories u
(i)
1...K,n

3:
4: //The forward pass
5: for k = 1 . . .K do
6: //resampling
7: Compute Neff according to Equation (18)
8: if Neff < TeffN then
9: Resample the continued trajectories

10: end if
11: //sampling
12: for i = 1...N do
13: //Draw each sample i
14: if i == 1 then
15: //Initial guess: Previous best trajectory
16: Set u

(i)
k,n = u

(b)
k+1,n−1

17: else if i == 2 then
18: //Initial guess: Previous smoothed trajectory
19: Set u

(i)
k,n = ûk+1,n−1

20: else if i < 2 +Nn then
21: Draw u

(i)
k,n according to Equation (22),

22: but without P(u
(i)
k,n|z

(:)
:,n−1).

23: else
24: Draw u

(i)
k,n according to Equation (22).

25: end if
26: //Simulate the system forward
27: Set x

(i)
k,n = f(x

(h(i,k,−1))
k−1,n ,u

(i)
k,n)

28: end for
29: Compute state potentials according to Equation (21).
30: Compute forward beliefs according to equations (16), (17),
31: omitting B̂fwd(z

(i)
k−1) if we resampled at this k.

32: end for
33: //Backward message passing and smoothing
34: Compute backwards messages and beliefs using equations (15),

(13)
35: Obtain smoothed control û1...K,n using Algorithm 1
36: //Finish
37: Deploy the optimal control u

(b)
1,n, b = arg maxb(P(z(b)))

38: return u
(b)
1...K,n, û1...K,n and u

(i)
1...K,n
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