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Figure 1: An example of the synthesized animation (downsampled from the original 30 fps). Frame 1: balancing in the user-specified ready
stance. Frames 2,3: The character anticipates that the ball would hit it and dodges down. Frame 4: anticipation pose to get enough leg swing
momentum. Frames 5,6,7: swinging the leg around and following with the rest of the body to end up again in the ready stance. The ready
stance facing direction was not given as a goal.

Abstract

We present a Model-Predictive Control (MPC) system for online
synthesis of interactive and physically valid character motion. Our
system enables a complex (36-DOF) 3D human character model to
balance in a given pose, dodge projectiles, and improvise a get up
strategy if forced to lose balance, all in a dynamic and unpredictable
environment. Such contact-rich, predictive and reactive motions
have previously only been generated offline or using a handcrafted
state machine or a dataset of reference motions, which our system
does not require.

For each animation frame, our system generates trajectories of char-
acter control parameters for the near future — a few seconds —
using Sequential Monte Carlo sampling. Our main technical con-
tribution is a multimodal, tree-based sampler that simultaneously
explores multiple different near-term control strategies represented
as parameter splines. The strategies represented by each sample
are evaluated in parallel using a causal physics engine. The best
strategy, as determined by an objective function measuring goal
achievement, fluidity of motion, etc., is used as the control signal
for the current frame, but maintaining multiple hypotheses is crucial
for adapting to dynamically changing environments.
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1 Introduction

Production of 3D character animation is a slow, laborious pro-
cess. Further, if one aims for expressive interaction and real-
ism, the amount of animation required in interactive software like
games is practically infinite. A long line of research addresses
these problems by seeking to transform the animator or game de-
signer into a choreographer who commands virtual agents that al-
gorithmically synthesize the desired motions based on high-level
goals. Successful synthesis results in physical validity (realistic
body part masses and muscle forces, respecting non-penetrating
contacts and friction), and leads naturally to movement qualities
like “squash-and-stretch” and anticipation [Witkin and Kass 1988;
Lasseter 1987].Following the seminal work of, e.g., Witkin and
Kass [1988] and Sims [1994], basic behaviors such as balancing
and locomotion can now be generated in real-time, and offline sys-
tems exist for synthesizing more complex motions [Geijtenbeek
et al. 2011; Al Borno et al. 2013; Erez et al. 2013]. However, on-
line, interactive synthesis of difficult, contact-rich movements, such
as acrobatics, remains a challenge, particularly in unpredictable dy-
namic environments where prior animation or motion capture data
is unavailable.

This paper tackles the problem using a novel approach based on
Sequential Monte Carlo (SMC) methods for multimodal tracking,
here applied to trajectory optimization and Model-Predictive Con-
trol (MPC). We present a trajectory optimization system with two
key design goals: 1) the resulting movement should be creative and
interesting with minimal input data, i.e., goals and constraints in-
stead of pre-made animation or motion capture data, and 2) the
system should operate at an interactive frame rate at design time,
enabling rapid iteration of the goals and constraints. The output of
our system is a time-varying control strategy that drives the char-
acter towards the specified goals, while accounting for changes
in the environment. Furthermore, the output can be mapped to a
more lightweight runtime controller using standard machine learn-
ing techniques.

We score the potential control strategies by an objective function
(a fitness function) that measures goal attainment and the physi-
cal properties of the motion. The function is highly non-convex
and multimodal, reflecting the fact that many strategies may lead
to the desired goal. Naturally, some are better than others —
smoother, use less energy, “more natural”; however, finding the
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Figure 2: High-level system architecture.

global maximum using standard nonlinear optimization is not a ro-
bust approach, since changes in the environment may unpredictably
change the objective function. To attain robustness in the face of
this uncertainty, we maintain a discrete family of potential control
strategies. Formally, treating each control strategy as a point in a
high-dimensional space (to be made explicit below), we evolve a
population of samples using Sequential Monte Carlo sampling so
that the ensemble remains well-distributed even when the fitness
landscape changes. This allows the optimizer to switch strategies if
changes in the environment so dictate. Our formulation also allows
straightforward parallelization: the objective function values for the
samples can be computed in an arbitrary order. We further exploit
temporal coherence by forming a sample generation prior for the
current frame based on previous frames.

Our contributions are

• the introduction of SMC to online synthesis of physically valid
character motion;

• a novel sequential sampling method that allows easy integration
of machine learning. The sampler utilizes kD-trees for adaptive
sampling;

• online, near-real-time synthesis of complex get up strategies,
e.g., planting a hand on the ground, leaning on the hand to allow
moving a foot closer, and finally shifting weight on the foot to
rise up.

An example of the motion generated by our system is shown in
Figure 1. Our character is able to balance in a given pose, dodge
projectiles, and improvise a variety of complex get up strategies if
forced to lose balance, all without precomputation or training data.

Figure 2 gives an overview of the main components of our system,
including the multimodal sampler/optimizer that generates motion
plans, a parallelized physics engine that is used to simulate the
movement resulting from each motion plan, and an optional ma-
chine learning system that generates one or more predictions used
for seeding the adaptive sampling in each frame.

2 Related work

Physically Valid Procedural Character Animation The vast re-
search on procedural character animation is challenging to review
thoroughly within the scope of this paper, as central work such as
spacetime constraints by Witkin and Kass [1988] has hundreds of
citing papers. For a more complete review, we refer to Geijten-
beek et al. [2011]. We focus on optimization based animation
of active characters (e.g., locomotion, jumping, dodging) instead
of passive ragdolls that are trivial to implement using off-the-shelf
physics engines like Open Dynamics Engine or Bullet. We do not
discuss procedural animation techniques such as parametric motion

graphs [Heck and Gleicher 2007] that enable goal-driven behavior
based on a library of animation data, but do not enforce physical
constraints such as non-penetrating contacts. Such techniques are
covered, e.g., in the review by Pejsa and Pandzic [2010].

Offline Optimization The problem of synthesizing diverse and
physically valid motion based on spacetime constraints (e.g., jump
and land in a specific pose at a specified time while minimizing en-
ergy expenditure) has largely been solved in the offline case. Much
of the work has focused on extensions of the quadratic program-
ming (QP) formulation of Witkin and Kass [Witkin and Kass 1988;
Cohen 1992; Fang and Pollard 2003; Safonova et al. 2004], where
the optimized variables include the root position and rotation, and
joint rotations for each animation frame. QP is well suited for
spacetime optimization, as target poses can be defined as equal-
ity constraints, contacts as inequality constraints, and energy min-
imization and smoothness can be included in the quadratic cost.
However, the synthesized motions have been limited by the need for
prior knowledge of contact information, such as in what frames the
character should touch the ground and with which body parts. This
limitation was overcome by Mordatch et al. [2012], who introduced
auxiliary optimized variables that specify the contact information,
and who used L-BFGS for optimization.

Motion Synthesis as a Control Problem Spacetime optimiza-
tion can also be approached as a control problem. In this case,
the optimized variables describe the evolution of control param-
eters such as joint torques over time, and the resulting motion is
computed by forward dynamics simulation [Ngo and Marks 1993;
Wampler and Popović 2009; Al Borno et al. 2013]. This way, the
problem falls in the domain of MPC. Control optimization has the
benefit that physics constraints such as continuity and contacts are
handled frame-by-frame by the physics engine and do not have to
be included in the optimization. The approach also handles ad-
ditional dynamic objects, whereas a direct Witkin and Kass -style
spacetime formulation needs additional variables for each moving
object. On the other hand, symbolic expressions of Jacobians and
Hessians are not available, which motivates the use of stochastic,
derivative-free optimization methods. The dynamics simulations
for evaluating each sampled control vector are costly but straight-
forward to parallelize. In light of the recent work by Mordatch et
al. [2012] and Al Borno et al. [2013], both deterministic spacetime
optimization and stochastic derivative-free control optimization ap-
pear equally suitable for offline synthesis of contact-rich, complex
and acrobatic motions.

Online Optimization and Control using Prior Data Consider-
ing online synthesis of physically valid motion at interactive frame
rates, there are various approaches. Offline optimization has been
used to learn the parameters of neural networks and other controller
types that can be used in real-time physics simulation [Sims 1994;
Reil and Husbands 2002; Geijtenbeek et al. 2013]. This has the
drawback of limited generalization to novel situations. Reference
motions can be tracked under disturbances, e.g., using an MPC ap-
proach with a short-horizon QP controller that is run intermittently
and augmented with a proportional-derivate (PD) controller at each
simulation step [Da Silva et al. 2008], or preprocessing motion data
with spacetime optimization and then using a nonlinear quadratic
regulator [Muico et al. 2009], or sampling-based optimization of a
time-varying pose displacement relative to the reference trajectory
[Liu et al. 2010]. Existing controllers can also be combined to form
novel controllers for new goals [da Silva et al. 2009].

Online Optimization Without Prior Data Operating without ref-
erence motions or controllers complicates online synthesis. Our
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work falls into this category, and we draw inspiration from two
main prior systems.

Jain et al. [2009] have implemented balancing, stepping and other
behaviors using a frame-by-frame QP optimizer augmented with a
state machine that breaks movement down into subgoals that can
be implemented with a planning horizon of a single frame. The
subgoals are quite detailed, such as moving a lifted foot so that
the ground projection of the character’s center of mass lies midway
between the feet. This raises concerns about robustness, e.g., to
obstacles for foot placement, and decreases the probability of cre-
ative, emergent movements. In general, there is a trade-off between
minimizing computational cost (a short planning horizon), and min-
imizing the amount of prior information and assumptions needed in
the form of motion data or a state machine definition. Our system
does not need motion data, and our optimizer automatically gener-
ates balancing and footsteps without predefined states thanks to a
planning horizon of up to 4 seconds, which is enough for complet-
ing a rebalancing step, or even rolling on the ground and bouncing
back up. Our approach is also inherently predictive — characters
can anticipate events without hand-coded prediction algorithms.

Our work is perhaps closest to Tassa et al. [2012] who also studied
the actions of balancing and getting up, and used a multithreaded
physics engine to forward-simulate candidate trajectories. We ex-
tend their approach in three key areas: we use a longer planning
horizon (up to 4 seconds vs. their 0.5s), simultaneously track mul-
tiple modes of the fitness function (their iLQG method is unimodal),
and use a more complex character model, including 3-DOF joints.
As a result, our system adds the ability to plan movements with sev-
eral phases — e.g. getting up by planting a hand, pushing with the
hand to allow moving a foot closer, and then shifting weight on the
foot, as shown in Figure 14. The character of Tassa et al. is able
to get up from a lying position in a single bounce, implying rather
loose limits on the control torques, which simplifies the planning
problem. In later work, the problem of springing straight up was
solved by designing a state machine that explicitly breaks down the
task into a sequence of subtasks [Erez et al. 2013].

Sequential Monte Carlo Sampling SMC has been used widely
in various tracking problems [Arulampalam et al. 2002; Doucet
and Johansen 2009]. Body tracking using computer vision is es-
pecially close to our work, as many tracking systems feature both
particle filters (a form of SMC) and articulated human body models
[Deutscher et al. 2000; Schmidt et al. 2006]. SMC has also been
recently introduced to control optimization [Stahl and Hauth 2011;
Kantas et al. 2009; de Villiers et al. 2011], but to the best of our
knowledge, it has not been applied to motion synthesis with com-
plex articulated characters. Although our sampler bears similari-
ties, e.g., to the particle filter variants discussed by Arulampalam
et al. [2002], it is more precisely a sequential version of the mu-
tated kD-tree importance sampling of Hämäläinen et al. [2006],
which in turn is based on the hierarchical subdivision sampling of
Kajiya [1986]. Compared to particle filters, we apply similar pre-
diction, weight updating, and resampling operations to the samples,
but the formulae differ as the tree structure is used to compute sam-
ple weights and adaptive exploration variances.

In addition to Hämäläinen and Kajiya, many others have combined
kD-trees with sampling. For example, Thrun et al. [2000] de-
scribe Bayesian mobile robot localization using a kD-tree for sam-
ple weight computing, and for conditional sampling from a pre-
computed model of the joint distribution of poses and observations.
Rudoy and Wolfe [2006], building on Ihler et al. [2003] describe
efficient tree-based sampling from products of Gaussian mixtures.

Figure 3: An illustration of the basic principles of SMC. The
tracked probability density f(x) is approximated by a set of samples,
which are iteratively weighted, resampled and sampled. In the sam-
pling step, new samples are drawn from proposal densities based
on the previous samples. This is analogous to how many stochas-
tic optimization methods mutate samples to explore the parameter
space. During the resampling step, the samples at the peaks of f(x)
produce more “offspring”, while others may die out. Note that the
weights depicted here are only exemplary; the exact weighting for-
mulae vary between methods.

3 Adaptive Sequential Importance Sampling

3.1 Overview

We seek to control a physical character towards attaining goals.
We formulate this as finding the global maximum of a real-valued
non-negative objective function (fitness function) f(x; t), where
the vector x ∈ Rk defines a control strategy represented as time-
varying target joint angles and other parameters, explained in detail
in Section 4.2 1. Time t is a parameter rather than a domain vari-
able, and it accounts for a dynamic environment. As the search
space consists of an approximation to all the possible ways to drive
the actuators over a couple of seconds, it is easy to appreciate that
the objective function is multimodal, and that the modes shift, ap-
pear and vanish with time.

Multimodality of the objective function motivates a Sequential
Monte Carlo (SMC) approach. The core idea of SMC methods is
that a sequence of target probability densities is approximated using
an evolving set of weighted samples, as illustrated in Figure 3. The
sample set can then be used for estimating the modes of the density
function. A thorough mathematical treatment can be found, e.g., in
[Arulampalam et al. 2002; Doucet and Johansen 2009].

Although the terms particle filters and SMC are sometimes used
interchangeably, we use the latter in the sense of Doucet and Jo-
hansen [2009] to denote a general class of algorithms for sampling

1All our parameters have minimum and maximum values, and the prob-
lem is thus inequality-constrained by axis-aligned planes, i.e., the space of
possible solutions is a hypercube.
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from a sequence of target probability densities. Contrary to parti-
cle filter approaches, we simply treat the objective function f(x; t)
as a sequence of unnormalized target probability densities, instead
of modeling the posterior density p(xt|y1:t) or the marginal likeli-
hood p(y1:t), where y denotes observations related to x.

Doucet and Johansen [2009] show that particle filters can be inter-
preted as special cases of a generic SMC algorithm, which however
requires all samples to be drawn from known proposal densities.
Our sampler avoids this requirement, allowing the insertion of ad-
ditional arbitrarily obtained candidate samples, e.g., initial guesses
from the machine learning component in Figure 2. Whereas typical
SMC weighting comprises a division by the proposal density, we
use a kD-tree-based estimate of the realized sample density. This
provides a unified way of weighting random samples with known
proposal densities and initial guesses with no proposal density. Ad-
ditionally, the kD-tree provides means for adapting the search vari-
ance so that samples at low fitness regions are perturbed more.

Algorithm Overview We maintain a population {xi, f(xi; t)} of
N samples and their associated fitnesses that evolve over time. For
each frame, the algorithm performs the following steps:

1. Prune the sample set. Keep only the best M .

2. Draw a set of K new samples by optional heuristics and ma-
chine learning predictions that may depend on the current
state.

3. Construct a sampling prior q(x) based on the M + K sam-
ples by inserting the samples in a kD-tree and constructing an
adaptive PDF.

4. Until the budget of N samples is reached, draw new samples
from q(x). Use each new sample to adaptively update the
prior q(x).2

5. Pick the best sample and use it for driving the simulation for-
ward for the current time step.

The construction of the sampling prior q(x) and its adaptive refine-
ment are described in Section 3.3. Details on the outer loop are
presented in Section 3.4. The heuristics and machine learning com-
ponent are detailed in Section 4.5.

3.2 A 2D Example

To provide visualizations and intuition on our sampler applied to
motion optimization, we present a 2D problem with nonlinearities
and multimodality arising from physical contacts. Figure 4 gives
an example of the objective function of 2D ball throw optimization.
The optimized parameters are x = [s, α]T , where s is the throwing
speed, α is the throwing angle, and the aim is to get the ball as
close to a specified target g as possible. Figure 4A illustrates the
physical setup and shows two trajectories resulting from different
x. The target g is shown as a black circle.

We illustrate two different objective functions: the first, illus-
trated in Figure 4B, computes the closest point c(x) of the tra-
jectory and the target without regard for timing, i.e., f(x) =
exp {−‖c(x)− g‖2}. This produces a landscape with ridges, each

2This iteration of sampling from a model and updating the model based
on the samples is also central to some other optimization methods, such
as the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), which
has been gaining popularity in the motion synthesis literature. However,
whereas CMA-ES updates a unimodal model (a single Gaussian), our model
is multimodal.

Figure 4: A) A 2D ball throw test scene. The black circle denotes
the throw target. Two example ball trajectories are shown in red
and green. B) The objective function mapped to image intensity,
with respect to throw angle (horizontal axis) and throw speed (ver-
tical axis). The green and red circles show the location of the exam-
ple trajectories in the parameter space. C) The objective function
landscape when the time to hit target is constrained. D) An ex-
ample of 100 samples and hypercubes (rectangles in this 2D case)
generated by one time step of Algorithm 2.

Algorithm 1 Adaptive Importance Sampling using a kD-tree.
1: Draw x0 uniformly in parameter space, evaluate f(x0)
2: root← {x0, f(x0)}
3: repeat
4: Randomly select leaf node i with probability ∝ wi

5: Draw a sample xnew ∼ N (xi,Ci)
6: Evaluate f(xnew)
7: {n1, n2} ← INSERTTREE( xnew ) . n1, n2 are new leaves
8: wn1 ← Vn1f(xnew) . n1 is where xnew ends up
9: wn2 ← Vn2f(xn2) . n2 contains previous sample

10: until #samples = N

ridge corresponding to, e.g., different number of bounces. The two
example trajectories are marked by the red and green circles.

The second goal, illustrated in Figure 4C, aims to hit the target at a
specified point in time. The corresponding objective function sim-
ply evaluates the distance to the target at this time in the trajectory.
Now, some of the ridges become peaks, but the landscape is still
multimodal, as the ball can still reach the target using a variety
of different bounce sequences. Figure 4D illustrates the adaptive
kD-tree that defines the sampling prior q(x), whose construction is
detailed in the next section.

3.3 Adaptive Importance Sampling Using a kD-tree

We first describe an adaptive importance sampler for a time-
invariant, multimodal, unnormalized objective function f(x). The
method was proposed in [Hämäläinen et al. 2006], but we repeat
it for completeness, and then extend it for the sequential, time-
varying case. The process is outlined in Algorithm 1 and illus-
trated in Figure 5 and Figure 6. The process draws samples approx-
imately following f(x), allocating more samples at regions where
f(x) is high, with the approximation of f(x) gradually improving

To appear in ACM Transactions on Graphics (Proc. SIGGRAPH 2014)



Figure 5: 1D illustration of sampling from f(x) according to Algo-
rithm 1, but generating the samples inside the selected hypercubes
instead of drawing them from the normal distribution. The circles
denote samples and the rectangles illustrate the adaptive space sub-
division into hypercubes. In 1D, rectangle widths are the hypercube
volumes, and rectangle areas correspond to sample weights in Al-
gorithm 1. In step B, the sample falls in a valley of f(x), which
then biases the sampling to the right side in steps C and D.

with each sample.

The basic idea is to store the sample coordinates and objective
function values {xi, f(xi)} into a kD-tree built over the domain.
The tree adaptively subdivides the parameter space into hypercubes.
Each leaf node is a hypercube, and the volume Vi of each leaf gives
an approximate measure of the local density of samples. The weight

wi = f(xi)Vi (1)

gives a single-sample estimate of the integral of f(x) over the leaf
hypercube. One can interpret the tree as a piecewise constant ap-
proximation of f(x), from which one may draw samples by first
randomly selecting a hypercube with the selection probabilities
∝ wi, and then generating a sample uniformly inside the hyper-
cube. However, as shown in Figure 5, this naı̈ve kD-tree sampling
easily leads to biases if the value of f(x) evaluated at a sample is
not representative of the whole hypercube.

The solution is to treat the kD-tree as a mixture of Gaussians, il-
lustrated in Figure 6. For the selected hypercube i, the sample is
drawn from N (xi;Ci). The covariance Ci is diagonal with el-
ements cjj = (σdij)

2, where σ is a scaling parameter (we use
σ = 0.5) and dij is the width of the leaf hypercube i along di-
mension j. The Gaussian tails overlap the neighboring hypercubes,
which makes it more likely for the sampling to cross valleys and
recover from the biases.

Until a sampling budget is met, we draw a new sample from the
mixture, add the sample to the tree, split the leaf node where the
new sample lands between the new and old samples, and recompute
the weights for the two new leaves (Equation 1).

Figure 6: Treating the kD-tree as a mixture of Gaussians. The
mixture components are shown as the black curves in step A. The
Gaussians are centered at the samples, with standard deviations
proportional to the hypercube widths in each dimension. This blurs
the distribution model adaptively, with less blurring where sam-
ples are densely concentrated, and increases the chance of samples
crossing valleys, illustrated in step B.

f(x) and samples Tree 1 Tree 2 Average of 100 trees

Figure 7: Random trees. Left: a function and random samples.
Middle: two different kD-trees built from the samples on the left.
Right: average of 100 random trees.

3.4 The Sequential kD-tree Sampler

In our application, the fitness landscape varies from frame to frame
as the environment changes. The phenomenon is illustrated in Fig-
ure 8, where changing the throw target changes the objective. To
support changing landscapes, we now construct a Sequential Monte
Carlo sampler (Algorithm 2) based on the adaptive sampler de-
scribed above. Building a sampling distribution out of the samples
taken during the previous frame allows us to exploit temporal co-
herence.

At frame tj , the set of samples from the previous frame tj−1 is
first pruned to M < N samples by retaining the M samples whose
leaf nodes have the largest weights (lines 2-5). A large M means
that old samples get selected and re-evaluated often, which may
affect convergence in rapidly changing situations, whereas a low
value makes tracking multiple modes difficult as little information
is retained between frames. We use M = 0.1N in all our results.

After pruning, the tree is rebuilt by inserting the remainingM sam-
ples in random order (lines 6-10). This is crucial to avoid persistent
spatial biases in the sampling, as the tree building order affects the
hypercube volumes and, consequently, the sample weights. How-
ever, the randomization averages the biases out temporally. Figure 7
shows a function with samples, three different kD-tree models built
from the same set of samples, and an average of 100 trees. We
have also experimented with building an ensemble of trees for each
time step to further reduce the variance of the volume estimates for
each sample, but we do not so far have conclusive evidence of the
benefits.

After rebuilding we introduce new samples drawn from a set of
heuristics (lines 11-15, see Section 4.5). After this, the sampling
prior is complete: the tree contains the M best samples from the
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Figure 8: Tracking of the objective function landscape with 100
samples as the ball throw target moves. The red circles and gray
trajectories show the samples generated at each time step, and the
green trajectory and green circle show the selected best sample.
The benefit of multimodality is evident, as old modes vanish and
new ones appear. In the first frame (t=1), the samples are initialized
uniformly.

Algorithm 2 kD-Tree Sequential Importance Sampling
1: for each time step tj do

// Prune tree to M samples
2: while #samples > M do
3: find leaf i with minimum wi

4: REMOVETREE(xi)
5: end while

// Randomly shuffle and rebuild tree using old fitnesses
6: CLEARTREE()
7: {x1, . . . ,xM} ← RANDOMPERMUTE({x1, . . . ,xM})
8: for i = 1 . . .M do
9: INSERTTREE(xi)

10: end for
// Draw guesses from heuristics and ML predictors

11: for i = 1 . . .K do
12: xg ← DRAWGUESS()
13: evaluate f(xg; tj)
14: INSERTTREE(xg)
15: end for
16: {w1, . . . , wM+K} ← UPDATELEAFWEIGHTS()

// Then, perform adaptive sampling
17: repeat
18: Randomly select leaf node i with probability ∝ wi

19: if node contains old fitness f(xi; tj−1) then
20: compute current fitness f(xi; tj)
21: wi ← Vif(xi; tj) . update weight
22: else // Sample as in Algorithm 1
23: draw a sample xnew ∼ N (xi,Ci)
24: Evaluate f(xnew; tj)
25: {n1, n2} ← INSERTTREE( xnew )
26: wn1 ← Vn1f(xnew; tj)
27: wn2 ← Vn2f(xn2 ; tj) . f(xn2 ; tj) known
28: end if
29: until #samples = N
30: end for

previous frame, along with new samples generated by heuristics.
The remainder of the algorithm performs adaptive sampling much
like Algorithm 1 (lines 17-29). The only difference is that when
a leaf that contains a stale fitness value from the previous frame is
selected, it is recomputed and the weight updated, but a new sam-
ple is not generated (lines 20-21). When a node with an up-to-date
fitness is selected for refinement, sampling proceeds as in Algo-
rithm 1 (lines 23-27). When the budget of N samples is reached,
the current sample set is approximately distributed according to the
new fitness f(x; tj).

Figure 8 shows how Algorithm 2 tracks the objective function
modes in the 2D example when the ball throw target is moving.

3.5 Greedy Sampling

After nearly exhausting our sample budget, we further opportunis-
tically explore the region around the current best sample xb. We
modify Algorithm 2 so that for the last Ng samples of a time step,
the selection (line 18) always chooses the leaf with the best sample
so far, and a lower scaling factor σg is used for computing Ci. Ad-
justingNg and σg allows one to tune the balance between local and
global search. We use σg = 0.005. Section 5 presents the results
from our character motion synthesis with different values of Ng .
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Figure 9: The character model (left), and heavy and light versions
of the physics skeleton used for simulation.

4 System Description

4.1 Character Model

Figure 9 shows our character and physics models. In our tests, we
use two physics models: one light-boned, and another with a con-
siderably heavier torso and thus a higher center of mass (COM),
which makes balancing and acrobatics more difficult. The physics
objects have constant densities. The character has 30 actuated DOF
and 6 unactuated root DOF. The physics model consists of 15 bones
(rigid bodies) connected using 3-DOF ball and 1-DOF hinge joints,
the latter used for elbows, knees and ankles. We do not model clav-
icles, toes, and fingers.

For simulation, we use Open Dynamics Engine (ODE) 0.12, using
ODE’s direct “big matrix” LCP solver, a time step of ∆t = 1/30
seconds, and CFM and ERP parameters as 10−5 and 0.2, respec-
tively. Note that ODE also has an iterative solver, which is faster but
less stable. For approximately similar quality, the iterative solver
requires a timestep of 1/120s, which results in slower operation. In
our case, the direct solver only takes approximately as much CPU
time as collision handling.

4.2 Optimization Parameterization

We represent control strategies as time-varying target joint angles
that are encoded as a sequence of control points of an interpolat-
ing cubic spline. We use n = 4 control points in all our experi-
ments. Our spline is non-uniform, i.e., the positions of the control
points along the temporal axis (the knots) are subject to optimiza-
tion. Specifically,

x = [z1, ..., zn], with zi = [qi, li, ti], (2)

where the qi denote the 30 target joint angles at time ti. The time
coordinate is expressed as an offset from the previous control point,
or from the current time for the first control point. The li are limits
on the maximum allowable torques for the actuated joints; allowing
them to vary instead of using fixed maximums allows the charac-
ter, e.g., to soften landings from high jumps. We use the sampling
bounds 50Nm < li < 150Nm for the lightweight model and
50Nm < li < 200Nm for the heavier one. The torque lim-
its are specified for three groups of bones: torso, arms and legs.
The non-uniform knot sequence allows fine-grained control of fast
movements such as jumps.

The total number of optimized variables is 136 (i.e. x ∈ R136),
consisting of 30 target angles, 3 torque limits, and 1 time coordinate
for each of the 4 control points.

4.3 Evaluating the Strategy by Forward Simulation

The spline defined by x gives continuous-time target joint angles
q(t;x) and limits on maximum torque l(t;x). To evaluate the ob-
jective function, we feed these targets into the physics simulation
and record what happens.

The total duration of the simulation for each sample varies depend-
ing on the control points. However, we only run the simulation up
to a predefined planning horizon. Section 5 presents results with
different planning horizons. The default used in the supplementary
video is 2 seconds.

For each time step tj , we evaluate the target angles q(tj ;x) and
torque limits l(tj ;x) and feed them to the ODE physics simulator.
ODE motors are controlled by a target velocities that ODE tries to
make the motors reach. We compute the target velocity for the ith
motor from the target pose as (qtarget

i − qcurrent
i )/∆t with qi denoting

joint angles as seen by the motor. The simulator is then stepped
forward by the time step; internally, it drives the motors to try to
match the target velocities, while respecting the torque limits.

The simulation produces a time series of realized 3D positions
b and velocities ḃ for all the 15 rigid bodies in the skeleton,
representing what happened when we tried controlling the char-
acter using the strategy x. We denote the series by S(x) =

{b(tj ;x), ḃ(tj ;x)}Ns(x)j=−1 , where Ns(x) is the number of simu-
lated time steps for the sample and j = 1 denotes the current time
step. We also use the shorthand notation b(j) = b(tj ;x). Given
the sequence, the objective function then measures the fitness value
of the realization using formulae given in Section 4.4.

The time index j of S(x) starts from -1, as we also include a his-
tory of past two frames in the evaluation, which allows the objective
function evaluation to prefer continuity with previously selected
control strategies. This reduces movement jitter, which could oth-
erwise be a problem in a stochastic sampling system like ours.

Note that as the LCP solver will adapt the torque based on, e.g.,
contact forces, our scheme provides a slightly higher level of con-
trol than using PD controllers. The human motor system comprises
both motion-inducing and stabilizer muscles, and stabilizing the
character in a given pose is easier with the motors than with PD
controllers, especially with the large ∆t we use.

Appendix A describes important implementation details related to
obtaining a causal, reproducible simulation.

4.4 Objective Function

The objective function drives the character towards the desired
goals. In this paper, our goal is to balance the character upright in
a predetermined “ready” stance defined by a pose vector qr , shown
in the first frame of Figure 1. The corresponding objective function
is formulated as

f(S) = fdfs max[fb, wufu] (3)

where fd, fs, fb, fu denote damage avoidance, smoothness, balanc-
ing, and get up objectives, respectively, and wu adjusts the priority
of the get up objective. We use wu = 0.0001. All components of
the objective function are functions of S, but in the following, we
omit the dependence for brevity.

Damage avoidance The damage avoidance objective tries to
avoid high-velocity impacts to important body parts. We include
head and pelvis in the objective to allow versatile movement but
prevent the character from falling on its head or bottom. The objec-
tive is formulated as

fd =

{
1 if nc = 0

maxi g(|vi · ni|), i = [1, ..., nc] if nc > 0
(4)

where nc is the number of all important body contacts during the
realized plan and vi and ni are the relative velocity and contact
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normal of the ith contact, respectively. The function g is a soft
threshold function g(x) = 0.5 + 0.5 tanh[c(td − x)], where td is
the threshold and c is a steepness parameter. We use td = 2.2 and
c = 2.5.

Smoothness The smoothness objective consist of minimizing
acceleration and jerk (the time-derivative of acceleration), which
has been found to help in producing natural movement [Van Wel-
bergen et al. 2010]. The objective is given by

fs = e
− 1

2

(
µa
σ2a

+
µJ
σ2
j

)
, (5)

where µa and µJ are the mean squared acceleration and jerk, re-
spectively, computed as:

µa =
1

Ns(x)− 1

Ns(x)−1∑
j=1

‖b̈(j)‖2,

µJ =
1

Ns(x)

Ns(x)−1∑
j=0

‖
...
b

(j)‖2, with (6)

b̈(j) =
ḃ(j) − ḃ(j+1)

∆t
,

...
b

(j) =
ḃ(j−1) − 2ḃ(j) + ḃ(j+1)

(∆t)2
.

We use values σa = 5.0 and σj = 13.7. The jerk term µJ is
affected by the history of the last two frames (j = −1, j = 0) to
avoid acceleration jitter from frame to frame.

Balancing The balancing objective is the most complex one,
comprising a desired target pose, desired up-vector direction, ve-
locity minimization, COM displacement minimization and penal-
ization based on other body parts than feet touching the ground.
We define it as

fb = max
j
f (j)
g e−

1
2
||r(j)
b
||2 (7)

where j denotes the jth frame. Here, fg is the penalizing term that
gets the value 0 if any body part other than the feet is touching the
ground, and 1 otherwise. The vector rb is defined as

r
(j)
b =

[
ċ(j)

σvel1

T

,
ḃ(j)

σvel2

T

,
d
(j)
com

σdisp

T

,
d
(j)
up

σup

T

,
q
(j)
d

σpose

T]T

(8)

Velocity minimization is done by the following terms: ċ(j) is the
velocity of the center of mass, projected to the ground plane. ḃ(j)

is the concatenation of the velocities of all bodies.

The COM displacement d(j)
com is computed relative to the COM of

the target balancing pose in a character-centric coordinate system
defined by the global up vector, and the character facing direction
vector projected to the ground plane, with the origin at midway be-
tween the feet. Similarly, the up vector difference d(j)

up is computed
in the character centric coordinates as dup = uroot − ubalanced,
where uroot is the up-vector of the root bone, and ubalanced is the
corresponding vector of the target balancing pose.

Finally, qd denotes the differences between the local joint angles
of the simulated and target poses, using angles as seen by ODE
motors. The values we use for the scaling multipliers are σvel1 =
0.05m/s, σvel2 = 0.75m/s, σdisp = 0.05m, σup = 0.1m and
σpose = 15.0 degrees.

The balancing objective is computed for each frame between a
specified minimum time and the length of the planning horizon,
and the best scoring frame is used for evaluating the whole sample.
We use 0.5s as the minimum. In many MPC systems, the objective
function is partitioned into a running cost and a terminal cost, and
the terminal cost is only evaluated at a fixed planning horizon. In
contrast, our system allows the optimizer some slack in terms of
when to reach the goals, which should make the objective function
modes larger and thus easier to find and track.

Get-Up The get up objective is the same as the balancing objec-
tive, but omitting the pose term and having less strict velocity mul-
tipliers σvel1 = 1.0m/s and σvel2 = 15.0m/s.

fu = max
j
f (j)
g e−

1
2
||r(j)u ||2 , (9)

where j is the jth frame and

r(j)u =

[
ċ(j)

σvel1

T

,
ḃ(j)

σvel2

T

,
d
(j)
com

σdisp

T

,
d
(j)
up

σup

T]T

, (10)

where terms are computed similar to fb, but the COM displacement
term also includes the y-component clamped to y = min(0, y −
(ytarget +h)), where h = 0.1m denotes an offset of the COM that
is higher than in the target balancing pose. This is to not penalize
motion where the COM is temporarily above the balancing pose,
e.g., when taking steps or leaping.

The main difference to previous work is that the objective function
formulation is multimodal due to the max function. In practice, we
have found that when the character has fallen down, the sampler
has difficulties maximizing all the components of the balancing ob-
jective fb. However, maximizing fu is much easier, and very often
leads to a situation where, as a consequence, fb is easier to max-
imize. In effect, this is similar to how Jain et al. [2009] define
balancing as a sequence of states including balancing and taking a
step. However, we do not need to define explicit state transitions or
target locations for foot placement, and the sampler may freely pick
the best strategy in each situation. The fu component also allows
the character to take steps to regain balance or dodge projectiles, as
it does not penalize deviations from the target pose.

Roll With the heavier model in the middle of Figure 9, even a
get up strategy is sometimes difficult to find when the character has
fallen on its back. In these cases, we add a third alternative objective
fr inside the max function in Equation 3 that makes the character
roll away from its back

fr = max
j
wre

−20||y(j)
f

+1||2 (11)

where yf is the y-coordinate of the character’s normalized forward
vector computed from the torso, andwr is the priority of the rolling.
We use a small wr = 10−40 because we want the character to keep
improvising alternative get up strategies if possible.

4.5 Heuristics and Machine Learning

Heuristics At each frame, we generate 20% of the samples uni-
formly within the parameter space. We also add a guess where
each control point of the spline equals the target balancing pose
and where joint torque limits are constant. Finally, we add the best
sample xb of the previous frame after stepping its parameters one
time step forward, i.e., shifting the spline backward in time by ∆t.

To appear in ACM Transactions on Graphics (Proc. SIGGRAPH 2014)



When evaluating the last heuristic, it is important to ensure that
the interpolated results from the original xb and the shifted spline
match to machine precision over the entire horizon. We achieve
this by writing the spline evaluator recursively, such that splines are
only ever evaluated at t = 0, and stepping forward by ∆t is handled
by changing the knots and control points.

Machine Learning Our system supports the optional generation
of guesses (lines 11-15 in Algorithm 2) from an arbitrary machine
learning component, with the idea of drawing on previous experi-
ence to infer good strategies for the current situation. We use ap-
proximate nearest neighbors query using the FLANN library [Muja
and Lowe 2009] to map a feature vector to a set of control strategies
that are injected as guesses on line 12. The feature vectors consist of
current pose angles, the “up” direction of the root node, the rotation
and velocity of the root node, and optionally, the relative position
and velocity of the closest projectile to dodge. The training set is
normalized with respect to L2 norms of the feature variables.

We train the mapping during online optimization (the ball evading
test explained in Section 5), storing the feature vector and best sam-
ple x for all frames where f(x) > 10−10.

While the simple ANN search is probably not the optimal machine
learning method for our case, Section 5.2 shows that as few as 3 ap-
proximate nearest neighbors improve get-up performance consider-
ably. We consider our implementation a proof-of-concept of inte-
grating machine learning with the SMC sampling of control strate-
gies; development and evaluation of more efficient and expressive
learning components is left as future work.

5 Results

We have tested our method in three ways: 1) throwing spheres at
the character, 2) adding sudden impulses to body parts to disturb
balance and throw the character around, and 3) triggering simulated
explosions that add impulses to all body parts. Figures 1, 10, 11,
and 14 illustrate these tests.

In the tests, the character is able to avoid the spheres — the avoid-
ance behavior implicitly caused by the jerk minimization goal —
recover lost balance in creative ways, such as rolling over the shoul-
ders to land back on its feet, and get up when thrown to the ground.
We describe the results both qualitatively (Section 5.1) and quanti-
tatively (Section 5.2).

In the following, we refer to the supplemental video using the time
in parenthesis (mm:ss).

Performance The supplemental video was captured in real-time
(using Fraps, www.fraps.com) on a Windows 7 PC with Intel
Core i7-4930k 3.40GHz CPU (12 logical cores), and an NVIDIA
GeForce GTX 480 GPU. On this computer, the optimizer runs at
approximately 20 fps with a 1/30s physics time step, N = 25 sam-
ples per frame, and a planning horizon of 2 seconds. On a 2012
MacBook Pro laptop with a 2.4GHz processor, the same settings
yield 6-10 fps, enough for interactive experimenting and parameter
tuning, which we consider one of the best aspects of the system. As
shown in the video, 25 samples is enough to synthesize a variety
of movements, whereas using 100 samples (01:39) slows the simu-
lation down considerably. On the other hand, using fewer samples
per frame or a shorter planning horizon yields fully real-time but
unreliable results (01:21).

5.1 Qualitative evaluation

The system shows considerable creativity in adapting to surprising
situations and utilizing the environment. For example, the char-
acter dodges the spheres using pirouette jumps (02:22) and slides
to dodge a rolling sphere, using a hand to keep the sphere away
(00:32). When the character’s head is punched to the ground, it
continues the movement as a cartwheel of sorts and rises up (00:49).
Taking steps emerges as an avoidance strategy (02:42, Figure 11),
although not always successfully (01:48). The character also often
lands on its feet when thrown in the air (00:00, 00:38).

The top left corner of the video shows which of the alternative ob-
jective function components gives the highest score for the best
scoring sample. “Balancing” corresponds to fb and “Getting up”
to wufu. Using the 2s planning horizon, the sampler is often able
to find a balancing strategy while still rolling on the ground after an
impact (01:02, 01:12).

The main drawbacks of the system are that movement is sometimes
stiff and has unnecessary joint contortions (02:18). The stiffness
is probably caused by our parameterization using target angles in-
stead of joint torques. The torque limit optimization does help, e.g.,
in softening landings; however, the sampling and/or the goals are
not able to relax the character’s hands in many cases. The char-
acter also often keeps the hands greedily close to the target pose
even when not nearly balanced. We experimented with shoulder
and elbow torque minimization goals, but this easily leads to the
other extreme of the hands hanging limp, which does not look nat-
ural for our fighter character. The heuristic balancing initial guess
can also cause the character to assume the target pose prematurely
while still moving (02:03). Sometimes this appears almost unphys-
ical, as the character uncannily knows that although it is swaying, it
will ultimately end up balanced. Without the heuristic or machine
learning guesses, however, the character keeps howering about the
target pose, illustrating a typically slow final convergence of global
sampling methods. Combining global sampling with local refine-
ment is clearly a topic for future work.

In the future, one easy way to improve the naturalness of the move-
ments could be scripted or learned control of gaze and head ori-
entation. For example, real humans typically follow flying objects
with their gaze, and try to look at the expected landing spot while
airborne. The hand and foot contacts with the ground could also
be fine-tuned, e.g., so that the character always exerts forces on the
ground using the palm instead of fingertips. We expect that this can
be done using purely visual corrections based on inverse kinemat-
ics instead of modifying the optimization, but this remains future
work.

We have also tested two other balancing poses - an asymmetric
Taido (a martial art) ready stance and a regular standing position.
Both poses work, although the regular standing appears more diffi-
cult - it is less stable as the support polygon is smaller and COM is
higher.

5.2 Quantitative evaluation

The system is stochastic, and hence may occasionally provide good
results even with just a few samples. To ensure that our results are
representative, we have run a quantitative balancing and avoidance
test with varying parameters. In each test, 100 spheres are thrown
at the character from random directions. The spheres are 3x heav-
ier than the character, i.e., failure to avoid the ball almost certainly
leads to the character falling down. We measured the percentage
of times the character was balanced 5 seconds after the ball was
thrown, determined by thresholding the objective function value.
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Figure 10: The user triggers an explosion and the character flips around in the air to land on its feet.

Figure 11: Footsteps emerge as the character dodges the balls thrown at it.

To succeed, the character could either dodge the ball, or get suc-
cessfully up after a failed dodge. The test also saves a screenshot of
each failure case. The most typical cases are wide splits and lying
on the back. The supplementary video shows that these are difficult
situations (01:33, 01:48).

The left side of Figure 12 shows the success percentage as a func-
tion of optimizer samples per frame in four conditions. ST de-
notes the “standard” setup used in capturing the supplemental video
(2s planning horizon, lightweight character model). In ST+ML, 3
FLANN predictions were generated in each frame from a dataset
of 100k training vectors, which yielded better results at low sample
budgets. This indicates that our system can utilize machine learn-
ing as intended. The HV curve denotes the heavier character model
with no changes compared to ST, which yields abysmal success
rates at low sample budgets. Performance is better in the HV2 case,
where we activated the “roll away from back” goal, used a 3.5s
planning horizon, and measured success after a longer period of 8
seconds after each ball throw.

The right side of Figure 12 shows the successful attempts as a func-
tion of the greedy sampling parameter Ng . There appears to be a
sweet spot of 25-50% greedy samples. All our tests and the supple-
mental video capturing use Ng = 25%.

Figure 13 shows the successful attempts as a function of the number
of samples and the length of the planning horizon. One can see
that the 2s horizon used in the supplementary video is a reasonable
default, and longer horizons do not produce considerable benefit.

6 Conclusion

We have demonstrated that Sequential Monte Carlo (SMC) sam-
pling is a viable approach for online synthesis of complex human
movements without reliance on animation or motion capture data.
The central features of the system are the use of kD-trees for sam-
pling, non-uniform splines for pose interpolation, and a rigid body
physics engine with custom modifications to ensure reproducible
simulations. While the key component, an adaptive sequential sam-
pling method, allows easy integration of machine learning to draw
on previous experience, we are surprised by the performance of the
sampler even without machine learning or using dimensionality re-
duction methods to constrain the search space.

We have integrated our system with Unity3D, a state-of-the-art
commercial game engine. The results will be released as open
source. However, we believe our sampler is simple enough to also

Figure 12: Get up percentage as a function of samples per frame
(left) and get up percentage as a function of greedy sampling per-
cent (right) in a test where 100 heavy balls were thrown at the char-
acter.

implement from scratch.

We see improving performance and controlling the style of synthe-
sized movement as the two main items for future work. We ex-
pect that both can be addressed by precomputing a suitable prior
for the sampling, and/or developing an interactive training appli-
cation where the user may instruct a machine learning system to
learn the most interesting movements that have emerged. Our pa-
rameterization also allows for pose-space dimensionality reduction,
and according to our initial experiments, it does make abnormal
poses less frequent. However, heavy dimensionality reduction us-
ing a small training set easily overconstrains the movement while
a larger training set allows the character to use poses in abnormal
contexts, e.g., kicking while balancing. Contextual and temporal
information could be incorporated, e.g., by using offline optimiza-
tion to generate a training set of control splines that follow motion
capture trajectories, similar to [Muico et al. 2009].

In the future, we also plan to explore novel interactions and game
mechanics utilizing the motion synthesis, and investigate whether
sequential sampling is competitive also in offline synthesis, where
the function landscape changes over time when the animator inter-
actively adjusts parameters. It could also be interesting to simulate
muscle animation, breathing, grunting etc. based on the predicted
near-future exertion (e.g., “I’ll jump and breathe out in one second,
better breath in now”).
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Figure 14: The user gives an impact to the left upper arm, causing the character to fall on its back. The emerging getting up strategy
comprises first rolling over to the right side, and then using the right hand as a support to allow moving the right foot so that weight can be
shifted on it.

Figure 13: Get up percentage as a function of samples per frame
(N) and the planning horizon.
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A Implementation Notes

We ended up using ODE and its direct LCP solver, as the iterative
solvers in ODE, Bullet Physics or PhysX engines were not stable
enough for active characters except at very small time steps that
were not computationally efficient. The 3-DOF hip and shoulder
joints were especially unstable, and although previous studies have
successfully used 2-DOF joints [Tassa et al. 2012], 3-DOF joints
are needed for a realistic character with a skinned mesh. It appears
that the current mainstream physics engines are optimized for pas-
sive objects and ragdolls, although a new version of Bullet has just
appeared with new solvers geared towards robotics.

We have made two important changes to ODE. Firstly, the origi-
nal implementation of ODE is not causal due to some internal im-
plementation details such as reordering of arrays for optimization
purposes and due to the way random numbers are generated. We
have solved these issues by removing the non-deterministic opti-
mizations and by storing the random number generator seed on a
threading context level. This ensures that running two simulations
in different threads with the same control parameters achieve ex-
actly the same motion. If the simulation is not fully causal, the
sampler sometimes forgets a chosen control strategy before it has
been completely executed.

Secondly, ODE implements joint motor limits in a way that might
cause too much force to be applied when the motor is moving away
from the limit. This causes instability, and ODE has solved this by
introducing a hand-tuned fudge factor that scales the force. Getting

the maximum available force and the fudge factor correct for each
body part is delicate and difficult, and to solve this we used a fudge-
free patch from the official ODE issue tracker that instead adds the
motor limits as constraint rows in the LCP formulation. This makes
the simulation more robust.

Our threading uses a pool of worker threads, which each obtain a
sample from the sampler, simulate the physics forward, compute
f(S) and store the computed value to the sampler. Access to the
sampler is synchronized, which means that our implementation is
not optimal for massively parallel computing. However, with our
current computers with up to 12 logical cores, we have achieved a
decent 75-80% core utilization.
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